• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, September 30, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Empowering the cell’s disposal system to deal with disease-prone garbage

Bioengineer by Bioengineer
February 18, 2020
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

PROXIDRUGS project led by Goethe University included in concept phase of ‘Clusters4Future’ program – search for novel active components for therapeutic solutions

IMAGE

Credit: Institute of Biochemistry II, Goethe University


PROXIDRUGS, the regional network led by Goethe University, aims at developing active molecules for selective intervention, opening new therapeutic avenues. Within the “Clusters4Future” ideas competition, the Federal Ministry of Education and Research has now selected the project for funding in the concept phase – as one of 16 finalists out of 137 proposals submitted.

“The body has developed an ingenious mechanism for disposing of superfluous or harmful proteins. We wish to seize this to break down disease-relevant proteins,” says PROXIDRUGS coordinator Professor Ivan ?iki? from the Institute of Biochemistry II at Goethe University, explaining the project’s rationale. Developing better therapies for diseases such as cancer, heart or inflammatory disease is the goal of the alliance of biochemists, chemists, clinicians and pharmacists from Goethe University, the Fraunhofer Institute for Molecular Biology and Applied Ecology (IME) and TU Darmstadt.

The Federal Ministry of Education and Research will support the project with funds of up to € 250,000 during the six-month concept phase starting in May. If the alliance then qualifies for the implementation phase, up to € 5 million will be available per year for PROXIDRUGS. With this funding scheme, the Ministry wants to turn scientific hotspots into powerful regional innovation networks. “Goethe University at the heart of the Rhine-Main region, a top location unique in Germany, bundles academic and industrial expertise for the development of innovative therapeutic concepts,” says Professor Simone Fulda, the University’s Vice-President, praising the consortium’s approach, which is based on reprogramming of the cell’s own systems.

Proteins destined for degradation are usually marked in an enzymatic reaction with the small protein ubiquitin. The cell’s “shredder”, the proteasome, recognizes this signal and breaks the respective protein down into its individual components, which are then recycled. At the focus of PROXIDRUGS is a novel class of drugs acting through a proximity-based mechanism: The corresponding molecules exhibit two functional units – one for the selective binding of the respective target protein and a second one to dock onto the required enzyme. In this way, any unwanted protein that has a suitable binding pocket can in principle be marked with ubiquitin and flagged for degradation.

First molecules based on this principle, called PROTACs (Proteolysis Targeting Chimeric Molecules), already exist. A major advantage is their high specificity and catalytic mode of action – meaning that each molecule can carry out multiple reactions, such that only a small amount of active drug is needed. First trials with PROTACs in prostate and breast cancer are currently underway. The researchers in the PROXIDRUGS alliance now want to create new molecules in this very promising class of drugs, e.g. for diseases that until now cannot be treated with small molecules.

One of the aims of the PROXIDRUGS alliance of Goethe University, TU Darmstadt and the Fraunhofer IME is to bundle existing expertise in basic and clinical research, in pharmaceutical and biotech companies in the Rhine-Main region within one network. “Translation of our results to the clinic will be challenging,” says ?iki?. “However, thanks to close collaboration with regional companies, which have already shown great interest in the project, and the involvement of University Hospital Frankfurt, I’m confident that we’ll master this challenge.”

###

Further information: http://www.bmbf.de/zukunftscluster

An image and the logo can be downloaded under: : http://www.uni-frankfurt.de/85772916

Image Caption: Diagram of PROTACs’ mode of action. A PROTAC is bifunctional and comprises a ligand (L, green) for the enzyme E3 ligase and a binding domain (L, red) for the target protein, connected via a short linker region (black). (Graphik: IBC2/GU)

Further information: Dr Kerstin Koch, Institute of Biochemistry II, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany, Tel.: +49(0)69-6301-84250, Email: [email protected]
http://www.biochem2.de

Aktuelle Nachrichten aus Wissenschaft, Lehre und Gesellschaft in GOETHE-UNI online (http://www.aktuelles.uni-frankfurt.de)

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 mit privaten Mitteln überwiegend jüdischer Stifter gegründet, hat sie seitdem Pionierleistungen erbracht auf den Feldern der Sozial-, Gesellschafts- und Wirtschaftswissenschaften, Medizin, Quantenphysik, Hirnforschung und Arbeitsrecht. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein hohes Maß an Selbstverantwortung. Heute ist sie eine der drei größten deutschen Universitäten. Zusammen mit der Technischen Universität Darmstadt und der Universität Mainz ist die Goethe-Universität Partner der länderübergreifenden strategischen Universitätsallianz Rhein-Main. http://www.goethe-universitaet.de

Herausgeberin: Die Präsidentin der Goethe-Universität Redaktion: Dr. Anke Sauter, Referentin für Wissenschaftskommunikation, Abteilung PR & Kommunikation, Theodor-W.-Adorno-Platz 1, 60323 Frankfurt am Main, Telefon 069 798-13066, Fax 069 798-763-12531, [email protected]

Media Contact
Kersten Koch
[email protected]
49-069-630-184-250

Tags: BiologycancerCardiologyCell BiologyChemistry/Physics/Materials SciencesMedicine/HealthPharmaceutical Science
Share12Tweet8Share2ShareShareShare2

Related Posts

16x9-33704D_0426_CPA_C-STEEL_WEB

Department of Energy funds new center for decarbonization of steelmaking

September 29, 2023
Three different types of thresholds for the breakthrough of active machine learning (AML).

Ghent University’s research team envisions a bright future with active machine learning in chemical engineering

September 29, 2023

Teams invent a new metallization method of modified tannic acid photoresist patterning

September 29, 2023

Making elbow room: Giant molecular rotors operate in solid crystal

September 29, 2023
Please login to join discussion

POPULAR NEWS

  • blank

    Microbe Computers

    59 shares
    Share 24 Tweet 15
  • A pioneering study from Politecnico di Milano sheds light on one of the still poorly understood aspects of cancer

    35 shares
    Share 14 Tweet 9
  • Fossil spines reveal deep sea’s past

    34 shares
    Share 14 Tweet 9
  • Scientists go ‘back to the future,’ create flies with ancient genes to study evolution

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New study will examine irritable bowel syndrome as long COVID symptom

True progression or pseudoprogression in glioblastoma patients?

Neural activity associated with motor commands changes depending on context

Subscribe to Blog via Email

Oops! It seems you have several subscriptions pending confirmation. You can confirm or unsubscribe some from the Subscriptions Manager before adding more.

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 56 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In