• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Embedded gas sensing device promises simple, accurate volatile organic compounds detection

Bioengineer by Bioengineer
July 6, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Applications range from air quality analysis to patient health screening

IMAGE

Credit: Kwiatkowski, Drozdowska, and Smulko

WASHINGTON, July 6, 2021 — Emitted as gases from certain solids or liquids, volatile organic compounds (VOCs) include a variety of chemicals. Many of these chemicals are associated with a range of adverse human health effects, from eye, nose, and throat irritation, to liver, kidney, and central nervous system damage.

The ability to detect VOCs in air samples simply, quickly, and reliably is valuable for several practical applications, from determining indoor air quality to screening patients for illnesses.

In Review of Scientific Instruments, by AIP Publishing, researchers at Gda?sk University of Technology, in Poland, describe a measurement device designed to analyze air samples containing various VOCs.

The setup “utilizes commercial and prototype resistive gas sensors of low-energy consumption to detect volatile organic compounds, such as methane, ethanol, toluene, methylene, nitrogen dioxide, formaldehyde, ammonia, among others, in air samples,” said researcher Andrzej Kwiatkowski. “The sensors change their resistance in the presence of VOCs, which exist in the environment and exhaled breath.”

After environmental conditions like humidity, temperature, and air pressure are monitored, the device inhales an air sample, either from the atmosphere or from a breath sample, enabling the sensors within its 220-milliliter aluminum gas chamber to analyze and respond to detection of VOCs in real situations.

Consisting of the gas chamber, a set of electrical valves, and an electrical micropump, the device is controlled by a touch-screen electronic module that can process and save data. Sensor responses are recorded and can be parametrized for further data processing using various detection algorithms.

In practical applications, the instrument can detect and measure the presence of VOCs within the span of 10 minutes.

“The setup is a low-cost device of simplified maintenance and service,” said Janusz Smulko, one of the co-authors. “Additional environmental sensors boost the accuracy of gas sensing by correcting effects induced by temperature and humidity changes. The device can monitor the air quality collected in a human environment, such as in an office or warehouse, to detect molds or bacteria by emitted smells.

“In medical applications, doctors can investigate the exhaled breath of patients by this noninvasive method to signal the need for a more detailed checkup.”

The researchers are currently applying it in hospital studies to determine the difference in the exhaled breath between healthy volunteers and patients infected by the COVID-19 virus.

###

The article “Embedded gas sensing set-up for air samples analysis” is authored by Andrzej Kwiatkowski, Katarzyna Drozdowska, and Janusz Marek Smulko. The article will appear in Review of Scientific Instruments on July 6, 2021 (DOI: 10.1063/5.0050445). After that date, it can be accessed at http://aip.scitation.org/doi/10.1063/5.0050445.

ABOUT THE JOURNAL

Review of Scientific Instruments publishes novel advancements in scientific instrumentation, apparatuses, techniques of experimental measurement, and related mathematical analysis. Its content includes publication on instruments covering all areas of science including physics, chemistry, materials science, and biology. See https://aip.scitation.org/journal/rsi.

Media Contact
Larry Frum
[email protected]

Related Journal Article

http://dx.doi.org/10.1063/5.0050445

Tags: BiologyChemistry/Physics/Materials SciencesMedicine/HealthTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Pulp Mill Waste Transformed into Eco-Friendly Solution for Eliminating Toxic Dyes

September 27, 2025

Fluorogenic Probes Unveil Ferroptosis Onset, Progression

September 26, 2025

Cutting-Edge Adaptive Optics Boost Gravitational-Wave Discoveries

September 26, 2025

Jingyuan Xu of KIT Honored with “For Women in Science” Sponsorship Award

September 26, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    82 shares
    Share 33 Tweet 21
  • Physicists Develop Visible Time Crystal for the First Time

    72 shares
    Share 29 Tweet 18
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Co-doped MnFe2O4: Temperature Effects on Conductivity

Salutogenic Approach Reduces Frailty in Pre-Frail Women

Advanced Battery Temperature Estimation via Optimized Algorithms

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.