• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, June 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Electrons from Earth may be forming water on the Moon

Bioengineer by Bioengineer
September 14, 2023
in Chemistry
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A team of researchers, led by a University of Hawai‘i (UH) at Mānoa planetary scientist, discovered that high energy electrons in Earth’s plasma sheet are contributing to weathering processes on the Moon’s surface and, importantly, the electrons may have aided the formation of water on the lunar surface. The study was published today in Nature Astronomy. 

Lunar water map

Credit: Li, et al., 2023

A team of researchers, led by a University of Hawai‘i (UH) at Mānoa planetary scientist, discovered that high energy electrons in Earth’s plasma sheet are contributing to weathering processes on the Moon’s surface and, importantly, the electrons may have aided the formation of water on the lunar surface. The study was published today in Nature Astronomy. 

Understanding the concentrations and distributions of water on the Moon is critical to understanding its formation and evolution, and to providing water resources for future human exploration. The new discovery may also help explain the origin of the water ice previously discovered in the lunar permanently shaded regions. 

Due to Earth’s magnetism, there is a force field surrounding the planet, referred to as the magnetosphere, that protects Earth from space weathering and damaging radiation from the Sun. Solar wind pushes the magnetosphere and reshapes it, making a long tail on the night side. The plasma sheet within this magnetotail is a region consisting of high energy electrons and ions that may be sourced from Earth and the solar wind.

Previously, scientists mostly focused on the role of high energy ions on the space weathering of the Moon and other airless bodies. Solar wind, which is composed of high energy particles such as protons, bombards the lunar surface and is thought to be one of the primary ways in which water has been formed on the Moon. 

Building on his previous work that showed oxygen in Earth’s magnetotail is rusting iron in the Moon’s polar regions, Shuai Li, assistant researcher in the UH Mānoa School of Ocean and Earth Science and Technology (SOEST), was interested in investigating the changes in surface weathering as the Moon passes through Earth’s magnetotail, an area that almost completely shields the Moon from solar wind but not the Sun’s light photons.

“This provides a natural laboratory for studying the formation processes of lunar surface water,” said Li. “When the Moon is outside of the magnetotail, the lunar surface is bombarded with solar wind. Inside the magnetotail, there are almost no solar wind protons and water formation was expected to drop to nearly zero.” 

Li and co-authors analyzed the remote sensing data that were collected by the Moon Mineralogy Mapper instrument onboard India’s Chandrayaan 1 mission between 2008 and 2009. Specifically they assessed the changes in water formation as the Moon traversed through Earth’s magnetotail, which includes the plasma sheet.

“To my surprise, the remote sensing observations showed that the water formation in Earth’s magnetotail is almost identical to the time when the Moon was outside of the Earth’s magnetotail,” said Li. “This indicates that, in the magnetotail, there may be additional formation processes or new sources of water not directly associated with the implantation of solar wind protons. In particular, radiation by high energy electrons exhibits similar effects as the solar wind protons.”

“Altogether, this finding and my previous findings of rusty lunar poles indicate that the mother Earth is strongly tied with its Moon in many unrecognized aspects,” said Li. 

In future research, Li aims to work on a lunar mission through NASA’s Artemis programs to monitor the plasma environment and water content on the lunar polar surface when the Moon is at different phases during the traverse of the Earth’s magnetotail.



Journal

Nature Astronomy

DOI

10.1038/s41550-023-02081-y

Method of Research

Observational study

Subject of Research

Not applicable

Article Title

Formation of lunar surface water associated with high-energy electrons in Earth’s magnetotail

Article Publication Date

14-Sep-2023

COI Statement

The authors declare no competing interests.

Share12Tweet8Share2ShareShareShare2

Related Posts

Mahmoud Asmar

Rewrite Physics professor receives Department of Energy grant to explore light-matter interactions this news headline for the science magazine post

June 13, 2025
a range of instruments flown on balloons high above Antarctica

Rewrite Strange radio pulses detected coming from ice in Antarctica this news headline for the science magazine post

June 13, 2025

Rewrite The quantum mechanics of chiral spin selectivity this news headline for the science magazine post

June 13, 2025

Rewrite New biomaterial developed by NUS researchers shows how ageing in the heart could be reversed this news headline for the science magazine post

June 13, 2025

POPULAR NEWS

  • Green brake lights in the front could reduce accidents

    Study from TU Graz Reveals Front Brake Lights Could Drastically Diminish Road Accident Rates

    158 shares
    Share 63 Tweet 40
  • New Study Uncovers Unexpected Side Effects of High-Dose Radiation Therapy

    75 shares
    Share 30 Tweet 19
  • Pancreatic Cancer Vaccines Eradicate Disease in Preclinical Studies

    68 shares
    Share 27 Tweet 17
  • How Scientists Unraveled the Mystery Behind the Gigantic Size of Extinct Ground Sloths—and What Led to Their Demise

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Rewrite Two frontiers: Illinois experts combine forces to develop novel nanopore sensing platform this news headline for the science magazine post

Rewrite Review of active distribution network reconfiguration: Past progress and future directions this news headline for the science magazine post

Rewrite University of Cincinnati structural biology research published in prestigious PNAS this news headline for the science magazine post

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.