• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, April 16, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Electronic nose sniffs out free radicals

Bioengineer by Bioengineer
March 23, 2021
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Collaboration works on nanosensors to detect atmospheric pollutants

IMAGE

Credit: G. Mannaerts, CC BY-SA 4.0
(https://commons.wikimedia.org/wiki/Category:Smog?uselang=de#/media/File:Ciel_du_Havre_04.JPG)

An international project involving researchers at Helmholtz-Zentrum Dresden-Rossendorf (HZDR) is receiving 3.2 million euros from the European research and innovation program “Horizon 2020” to develop a cost-effective method for measuring certain air pollutants. The team, whose members hail from both industry and science, aims to develop electrical sensors to detect harmful particles in the atmosphere. Air pollution is considered a major cause of more than 400,000 premature deaths in the European Union each year. Accurately measuring it, however, still poses major challenges for researchers.

Although the negative health effects of certain air pollutants, so-called free radicals, have been known for a long time, detecting and measuring them is still technologically highly complex. “These free radicals are reactive compounds that drive chemical processes in the atmosphere, thereby impacting climate change and the formation of acid rain or photochemical smog – which are all harmful to human health and the environment,” explains project leader Prof. Justin Holmes of University College Cork (UCC) in Ireland. Health is affected both indoors and outdoors.

The project team includes researchers from UCC, HZDR, the University of York (UK), the National Technical University of Athens (Greece), the Bulgarian company Smartcom and UCC Academy. Supported by an external consultant from UK-based air quality company Airlabs, Holmes and his team are working to develop cost-effective, high-tech instruments to measure harmful atmospheric radicals. The plan is to use this technology in aircraft, ships, and other platforms for air quality monitoring.

Sensitive, highly selective sensors

“To date, there are only a few research groups that are capable of performing such tests at only a few locations in the world. The process involves complex spectroscopic methods using large, expensive, and unwieldy equipment, which severely limits our knowledge of chemical processes in the atmosphere and thus our ability to control air quality and climate change,” says Dr. Yordan Georgiev of the Institute of Ion Beam Physics and Materials Research at HZDR, outlining the motivation behind the project, which is called “RADICAL”.

The international team now wants to eliminate this bottleneck by developing new methods to detect harmful radicals: “We want to create a technology that can be implemented relatively easily worldwide. To do this, we are working with partners from industry to advance the development of high-precision sensors that lend themselves to mass production, so we can ultimately provide real-time data on the distribution and transmission of free radicals in the atmosphere everywhere,” Georgiev sums up the project goal. The HZDR researchers involved in the project are responsible for manufacturing the electrical sensors to detect free radicals in the atmosphere. They are based on silicon nanowires, which are, in a way, the receptors of an electronic “nose”.

Detecting radicals worldwide in real time

The sensor mechanism essentially works like this: The electrically charged target molecules interact with the nanowire surface, changing the wire’s electrical conductivity. These interactions are thus directly converted into easily detectable electrical signals. The scientists ensure the selectivity of the highly sensitive sensors by functionalizing the surface of the nanowire, affixing a layer of molecules to its surface that will only bind the target molecules.

Project partner Prof. John Wenger, who is Director of the Centre for Research into Atmospheric Chemistry at UCC, believes that this technology goes far beyond the current state of the art and could be implemented at any operational air quality and weather station in the world. This would greatly improve the ability to monitor and control air quality, enable more accurate climate predictions, and ultimately bring about a better quality of life for all of us.

###

For more information:

Dr. Yordan Georgiev | Head of Nanofabrication

Institute of Ion Beam Physics and Materials Research at HZDR

Phone: +49 351 260 2321 | Email: [email protected]

Prof. Justin D. Holmes

School of Chemistry, University College Cork (UCC)

Phone: +353 214 903 608 | Email: [email protected]

Media contact:

Simon Schmitt | Head

Communications and Media Relations at HZDR

Phone: +49 351 260 3400 | Email: [email protected]

The Helmholtz-Zentrum Dresden-Rossendorf (HZDR) performs – as an independent German research center – research in the fields of energy, health, and matter. We focus on answering the following questions:

  • How can energy and resources be utilized in an efficient, safe, and sustainable way?
  • How can malignant tumors be more precisely visualized, characterized, and more effectively treated?
  • How do matter and materials behave under the influence of strong fields and in smallest dimensions?

To help answer these research questions, HZDR operates large-scale facilities, which are also used by visiting researchers: the Ion Beam Center, the High-Magnetic Field Laboratory Dresden, and the ELBE Center for High-Power Radiation Sources.

HZDR is a member of the Helmholtz Association and has six sites (Dresden, Freiberg, Grenoble, Görlitz, Leipzig, Schenefeld near Hamburg) with almost 1,200 members of staff, of whom about 500 are scientists, including 170 Ph.D. candidates.

Media Contact
Simon Schmitt
[email protected]

Original Source

https://www.hzdr.de/presse/electronic_nose_sniffs_out_free_radicals

Tags: Atmospheric ScienceBiomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesEnvironmental HealthPollution/Remediation
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

On the pulse of pulsars and polar light

April 16, 2021
IMAGE

Surprise twist suggests stars grow competitively

April 16, 2021

Leonardo da Vinci definitely did not sculpt the Flora bust

April 16, 2021

Experiments cast doubts on the existence of quantum spin liquids

April 16, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Jonathan Wall receives $1.79 million to develop new amyloidosis treatment

    60 shares
    Share 24 Tweet 15
  • Terahertz accelerates beyond 5G towards 6G

    852 shares
    Share 341 Tweet 213
  • UofL, Medtronic to develop epidural stimulation algorithms for spinal cord injury

    56 shares
    Share 22 Tweet 14
  • A sturdier spike protein explains the faster spread of coronavirus variants

    44 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

WeaponryUrogenital SystemViolence/CriminalsVehiclesWeather/StormsUrbanizationVirologyUniversity of WashingtonZoology/Veterinary ScienceVaccineVaccinesVirus

Recent Posts

  • A new guide for communicating plant science
  • Neural plasticity depends on this long noncoding RNA’s journey from nucleus to synapse
  • On the pulse of pulsars and polar light
  • New understanding of the deleterious immune response in rheumatoid arthritis
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In