• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, July 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Electric fish — and humans — pause before communicating key points

Bioengineer by Bioengineer
May 26, 2021
in Science News
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Tsunehiko Kohashi

American writer and humorist Mark Twain, a master of language and noted lecturer, once offered, “The right word may be effective, but no word was ever as effective as a rightly timed pause.”

Electric fish and today’s TED talk speakers take a page from Twain’s playbook. They pause before sharing something particularly meaningful. Pauses also prime the sensory systems to receive new and important information, according to research from Washington University in St. Louis.

“There is an increased response in listeners to words — or in this case, electrical pulses — that happens right after a pause,” said Bruce Carlson, professor of biology in Arts & Sciences and corresponding author of the study published May 26 in Current Biology. “Fish are basically doing the same thing we do to communicate effectively.”

Beyond discovering interesting parallels between human language and electric communication in fish, the research reveals an underlying mechanism for how pauses allow neurons in the midbrain to recover from stimulation.

Carlson and collaborators, including first author Tsunehiko Kohashi, formerly a postdoctoral research associate at Washington University, conducted their study with electric fish called mormyrids. These fish use weak electric discharges, or pulses, to locate prey and to communicate with one another.

The scientists tracked the banter between fish housed under different conditions. They observed that electric fish that were alone in their tanks tend to hum along without stopping very much, producing fewer and shorter pauses in electric output than fish housed in pairs. What’s more, fish tended to produce high frequency bursts of pulses right after they paused.

The scientists then tried an experiment where they inserted artificial pauses into ongoing communication between two fish. They found that the fish receiving a pause — the listeners — increased their own rates of electric signaling just after the artificially inserted pauses. This result indicates that pauses were meaningful to the listeners.

Other researchers have studied the behavioral significance of pauses in human speech. Human listeners tend to recognize words better after pauses, and effective speakers tend to insert pauses right before something that they want to have a significant impact.

“Human auditory systems respond more strongly to words that come right after a pause, and during normal, everyday conversations, we tend to pause just before speaking words with especially high-information content,” Carlson said. “We see parallels in our fish where they respond more strongly to electrosensory stimuli that come after a pause. We also find that fish tend to pause right before they produce a high-frequency burst of electric pulses, which carries a large amount of information.”

The scientists wanted to understand the underlying neural mechanism that causes these effects. They applied stimulation to electrosensory neurons in the midbrain of the electric fish and observed that continually stimulated neurons produced weaker and weaker responses. This progressive weakness is referred to as short-term synaptic depression.

Cue Mark Twain and his well-timed pauses.

The scientists inserted pauses into the continuous stimulation. They found that pauses as short as about one second allowed the synapses to recover from short-term depression and increased the response of the postsynaptic neurons to stimuli following the pause.

“Pauses inserted in electric speech reset the sensitivity of the listener’s brain, which was depressed during the continuous part of the speech,” Kohashi said. “Pauses seem to make the following message as clear as possible for the listener.”

Similar to humans.

Synaptic depression and recovery are universal in the nervous system, the researchers noted.

“We expect the same mechanism, more or less, plays a role in pauses during communication in other animals, including humans,” Carlson said.

###

Media Contact
Talia Ogliore
[email protected]

Tags: BehaviorBiologyLanguage/Linguistics/SpeechMarine/Freshwater BiologyneurobiologyPhysiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

July 20, 2025

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

July 20, 2025

Pathology Multiplexing Revolutionizes Disease Mapping

July 20, 2025

Single-Cell Atlas Links Chemokines to Type 2 Diabetes

July 20, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    59 shares
    Share 24 Tweet 15
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14
  • IIT Researchers Unveil Flying Humanoid Robot: A Breakthrough in Robotics

    53 shares
    Share 21 Tweet 13
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.