• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Effectively collecting tiny droplets for biomedical analysis and beyond

Bioengineer by Bioengineer
January 31, 2019
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: City University of Hong Kong & PNAS

In a single sneeze or a cough, as many as 40,000 tiny droplets are forcibly propelled from our mouth and nose into the air. While we cannot control our sneezing, researchers from City University of Hong Kong’s (CityU) have recently developed an original method to collect micro-droplets, such as these precious human dewdrops, which may shed light on applications in detecting disease-causing bacteria and preventing the spread of disease.

The research work led by Dr Yao Xi, Assistant Professor of the Department of Biomedical Sciences at CityU has recently been published in the scientific journal Proceedings of the National Academy of Sciences of the United States of America (PNAS), with the title “Directional pumping of water and oil microdroplets on slippery surface”.

Moving oil and water-based micro-droplets without external force in a controlled fashion can be very useful in water harvesting and biomedical analysis. But it is not as easy as seeing a lone rain drop sliding down a window pane. “Droplets in micrometre scale (one millionth of a metre) have very different properties than its larger counterparts such as teardrops. Their tiny size and light weight means that the normal pull of gravity is insignificant in moving them,” Dr Yao explains, who is the correspondence author of the paper.

There had been other efforts to collect micro-droplets. However, to do it in a controlled manner, or to move a single droplet at a specific direction, had remained a challenge for scientists.

A force enabling insects to walk on water surface

But the team’s innovative strategy to transport micro-droplets was inspired by the “capillary action” observed in nature. In nature, the capillary force is important in the transport of water and nutrients in plants. Some water-walking insects also use the capillary force to move themselves off the top of water surface and to the shore.

Capillary action means the movement of a liquid within a narrow tube, due to the surface tension of the liquid, and the adhesive forces between the liquid molecules and the tube. For example, if we observe a tube of water with a magnifier, we would see a “meniscus” – a curve in the upper surface of the water near to the surface of the tube due to the capillary force. Furthermore, the capillary action can act on a meniscus to lift the liquid up the tube without the assistance of, and in opposition to, external forces such as gravity.

Inside laboratory, Dr Yao’s team made use of this capillary force to directionally transport micro-droplets on a slippery surface. By simply printing mini-hydrogel dots embossed on a surface and then infusing a thin layer of silicone oil on it, menisci were formed around the hydrogel dots. When the surface was sprayed with aerosol micro-droplets, the droplets would move towards the dots due to the capillary force.

Applicable to different liquids

This strategy have several advantages. Dr Yao’s team found that it is applicable to all liquid droplets, including both water and oil, which are immiscible with the infused oil. The strength of the capillary force is determined by the meniscus length. So an effective distance range of how far a micro-droplet can be collected can be estimated. Also, the movement is continuous and there is no risk of “saturation”. As long as the droplets are within the effective distance range, all of them will be collected accordingly.

What’s more, this strategy– unlike other previous attempts– works well even with just a single micro-droplet which helps to identify the mechanism of the movement.

The low fabrication cost, its wide choices of manufacturing materials and compatibility with various liquid droplets can pave the way for further research on different applications, including fog collection, water harvesting, heat exchangers, microfluidics, and especially biomedical analysis or even bacterial killing.

Potential biomedical applications

In their study, Dr Yao’s team used droplet containing either E. coli or S. aureus bacteria to demonstrate the potential application. They found that once collected in the hydrogel dots, it was easier to detect the bacteria in the droplets, which could not be easily detected in its otherwise wildly scattered form.

“Imagine in an enclosed area,” says Dr Yao, “if we can apply this simple yet robust technology to help identify the disease-causing bacteria. Or, to go even further, imagine if we can kill these bacteria by injecting biocides on the gathering hydrogel dot beforehand, it will be very practical in a populated area to prevent the spread of infectious disease.”

The first authors of the paper are Jiang Jieke, postgraduate student at CityU’s Department of Biomedical Sciences, and Dr Gao Jun, postdoctoral fellow at the Netherland’s University of Twente’s Physics of Complex Fluids. Other researchers include Zhang Hengdi, He Wenqing and Zhang Jianqiang from CityU’s Department of Biomedical Sciences, and Dr Dan Daniel from Institute of Materials Research and Engineering in Singapore.

###

Media Contact
P.K. Lee
[email protected]
852-344-28925

Related Journal Article

http://dx.doi.org/10.1073/pnas.1817172116

Tags: Biomedical/Environmental/Chemical EngineeringEnvironmental HealthInfectious/Emerging DiseasesMaterialsMechanical EngineeringNanotechnology/MicromachinesParticle PhysicsPolymer ChemistryPublic HealthTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Enhancing Metaphor Comprehension in Kids with Autism

November 24, 2025

Vaccination’s Role in Preventing Long COVID: Review

November 24, 2025

Enhancing Gut Microbiota: RS2 and Arabinoxylan in PCOS

November 24, 2025

Tibial Nerve Techniques Enhance Diabetic Neuropathy Management

November 24, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    202 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    93 shares
    Share 37 Tweet 23
  • Scientists Create Fast, Scalable In Planta Directed Evolution Platform

    98 shares
    Share 39 Tweet 25

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionizing Problem Formulation with Feedback-Integrated Prompts

Fuzzy Logic’s Role in Managing COVID-19 Outbreaks

Enhancing Metaphor Comprehension in Kids with Autism

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.