• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Duchenne muscular dystrophy diagnosis improved by simple accelerometers

Bioengineer by Bioengineer
February 11, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

As the most common form of the disease, early diagnosis of Duchenne muscular dystrophy is key to survival

IMAGE

Credit: Image courtesy of the authors


WASHINGTON, February 11, 2020 — Duchenne muscular dystrophy is the most common type of muscular dystrophy, affecting more than 10,000 males at birth per year in the United States with severe physical disability, chronic wasting and muscle deterioration.

Testing through MRIs, gene testing or muscle biopsy requires specialized equipment, invasive procedures and high expense, but measuring changes in muscle function and identifying compensatory walking gait in young boys could lead to earlier detection.

This week in Chaos, from AIP Publishing, the authors present an index called a relative coupling coefficient, which can be used to quantify the factors involved in the human gait and more accurately screen for Duchenne muscular dystrophy. Using inexpensive inertial sensors, they measured the movements of different parts of the body in test subjects, viewing the body as a kinematic chain.

“In sports science, the theory of kinematic chain is the most classical one in explaining the transmission of human body power,” author Jian An said. “In the process of movement, different links complete the corresponding actions, according to the specific structure at a given time, in order to maintain the relative dynamic stability of the body.”

In the study, accelerometers were placed on participants in five locations: both forearms, both leg flanks and the core of the body. As participants walked, time series data was collected to create a core-limb coupling coefficient, which compares core and limb data, and a homolateral-limb coupling coefficient, which compares data from the forearm and leg flank. Combined, these provide a picture of the degree of coupling throughout the whole body.

The study focuses on human walking as a system of subsystems — linked-up body parts that operate cooperatively in a nonlinear complex system. That means linear dynamics in statistical analysis do not describe it well, and nonlinear dynamics models are better suited to the task.

The authors use phase space reconstruction to capture the dynamics in the complex system of the human gait pattern. Their work is based upon Takens’ embedding theory, which allows them to extract the embedding dimension in a one-dimensional time series dataset. The result is a data-infused methodology for screening for Duchenne muscular dystrophy.

The authors plan to continue their work to improve the ability of the relational coupling coefficient to increase its accuracy as a tool for diagnosis, as well as developing applications for elderly people, such as predicting fall risk.

###

The article, “Quantitative coordination evaluation for screening children with Duchenne muscular dystrophy,” is authored by Jian An, Zhiying Xie, Fan Jia, Zhaoxia Wang, Yun Yuan, Jue Zhang and Jing Fang. The article will appear in Chaos on Feb. 11, 2020 (DOI: 10.1063/1.5126116). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/1.5126116.

ABOUT THE JOURNAL

Chaos is devoted to increasing the understanding of nonlinear phenomena in all areas of science and engineering and describing their manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines. See https://aip.scitation.org/journal/cha.

Media Contact
Larry Frum
[email protected]
301-209-3090

Related Journal Article

http://dx.doi.org/10.1063/1.5126116

Tags: Algorithms/ModelsBiologyBiomechanics/BiophysicsChemistry/Physics/Materials SciencesDiagnosticsMedicine/HealthSystems/Chaos/Pattern Formation/Complexity
Share12Tweet8Share2ShareShareShare2

Related Posts

Fluorescent RNA Switches Detect Point Mutations Rapidly

Fluorescent RNA Switches Detect Point Mutations Rapidly

November 21, 2025
Engineering Ultra-Stable Proteins via Hydrogen Bonding

Engineering Ultra-Stable Proteins via Hydrogen Bonding

November 19, 2025

Designing DNA for Controlled Charge Transport

November 18, 2025

Chemoselective Electrolysis Drives Precise Arene Hydroalkylation

November 17, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    202 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    93 shares
    Share 37 Tweet 23
  • Scientists Create Fast, Scalable In Planta Directed Evolution Platform

    96 shares
    Share 38 Tweet 24

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Reviving the Baobab: Micropropagation of Adansonia digitata

Exploring Vast Chemical Space with Ugi Reaction

Unlocking Drought Resistance in Perennial Ryegrass Genetics

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.