• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, June 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Neuroscience

Drug Enhances Brain Signaling by Factor of 1,000

Bioengineer by Bioengineer
January 6, 2015
in Neuroscience
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Proteins play a fundamental role in almost all biological processes. They consist of chains composed of up to 20 different amino acids, and their composition, structure and function are controlled by the genetic code. Researchers are now attempting to rewrite the core function of proteins by making alterations in their molecular composition, for example. By means of advanced chemical-biological techniques, scientists are capable of designing new chemical compounds that overcome nature’s limitations.

Drug Enhances Brain Signaling by Factor of 1,000

The capacity to manipulate proteins has led to important breakthroughs in biotechnology and biomedicine.

In the current study, the researchers studied receptors that play a key role in the brain in health and disease. Then they designed new chemical compounds – peptides – with superior effect on the receptors’ interaction with gephyrin, a protein that is vital for the brain:

The capacity to manipulate proteins has led to important breakthroughs in biotechnology and biomedicine. We have, among other things, studied the so-called GABA receptors which are important targets for drugs for the treatment of mental disorders, e.g. benzodiazepines for the treatment of anxiety and insomnia. We have, more specifically, studied the receptors’ interaction with the protein gephyrin. Not only to learn more, at a structural level, about a key interaction in the brain, but also to see whether we could turn it up or down. We have very successfully achieved the latter – we can document an inhibition, which, at best, is more than 1,000 times stronger than what is seen in nature, says Postdoc Hans Maric. He is part of the Center for Biopharmaceuticals at the University of Copenhagen, which is headed by Professor Kristian Strømgaard.

The new research findings have just been published in Nature Communications and Angewandte Chemie. The first article describes the initial work with mapping glycine and GABA receptors, respectively, and how the two receptor types interact differently with gephyrin. The other article describes the molecular restructuring that has created a neuro-active peptide that is 1,000 times more powerful that what nature offers.

Story Source:

The above story is based on materials provided by University of Copenhagen – The Faculty of Health and Medical Sciences.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Redox biomarker could predict progression of epilepsy

October 5, 2016
blank

Neural membrane’s structural instability may trigger multiple sclerosis

October 5, 2016

Scientists find new path in brain to ease depression

October 5, 2016

Key players responsible for learning and memory formation uncovered

October 3, 2016
Please login to join discussion

POPULAR NEWS

  • Green brake lights in the front could reduce accidents

    Study from TU Graz Reveals Front Brake Lights Could Drastically Diminish Road Accident Rates

    161 shares
    Share 64 Tweet 40
  • New Study Uncovers Unexpected Side Effects of High-Dose Radiation Therapy

    76 shares
    Share 30 Tweet 19
  • Pancreatic Cancer Vaccines Eradicate Disease in Preclinical Studies

    71 shares
    Share 28 Tweet 18
  • How Scientists Unraveled the Mystery Behind the Gigantic Size of Extinct Ground Sloths—and What Led to Their Demise

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Translational Read-Through Drugs for Fanconi Anemia

Urban Trees Viewed More Negatively Post-COVID Lockdowns

Truncated LKB1 Mimics Smac to Boost Fas Apoptosis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.