• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, December 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Immunology

Drug-delivering device streamlines tuberculosis treatment in pigs

Bioengineer by Bioengineer
March 13, 2019
in Immunology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists have created a retrievable, wire-like device that safely resides in the stomach and releases large dosages of drugs over several weeks. The new delivery system, which was successfully tested in pigs, could help patients in remote and underserved geographic areas adhere to drug treatments for infectious diseases such as tuberculosis (TB) that are currently treated with burdensome amounts of oral medications. TB represents one of the most widespread and devastating infectious diseases today, causing approximately 10 million cases worldwide in 2017. Most cases of TB can be effectively treated with oral antibiotics, but most therapies involve multiple drugs administered in large doses for up to several months. (An average 60 kg patient requires 3.3 grams of antibiotics a day.) Following such treatment regimens can be challenging for patients (previous research reports that 50% of patients experience difficulty sticking to treatment recommendations), especially in developing regions that lack adequate healthcare resources. As a result, poor patient adherence to treatments has become a major contributor to treatment failure and the emergence of drug-resistant TB strains. To meet the need for a more practical delivery system, Malvika Verma and colleagues developed a new platform consisting of bead-like drug pills housed on a flexible wire that can be deployed to the stomach through the esophagus in 60 seconds. The researchers studied their device in healthy pigs and found that it safely released the standard TB antibiotics rifampicin over one week and doxycycline hyclate over four weeks, and was easily retrieved via a nasogastric tube after the treatment was completed. Importantly, a questionnaire of 111 TB health care providers and 300 patients with TB in India showed that a long-term nasogastric drug delivery system was considered feasible on the ground, and an established model predicted that such a device could result in over $8,000 in savings per patient.

###

Media Contact
[email protected]
202-326-6440
http://dx.doi.org/10.1126/scitranslmed.aau6267

Tags: Infectious/Emerging DiseasesMathematics/StatisticsMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

UMass Amherst grad student awarded fellowship for food allergy research

July 23, 2021
IMAGE

Less-sensitive COVID-19 tests may still achieve optimal results if enough people tested

July 22, 2021

Public trust in CDC, FDA, and Fauci holds steady, survey shows

July 20, 2021

USC study shows male-female differences in immune cell function

July 19, 2021
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tailoring Cellular Structures for Precise Nonlinear Mechanics

Key Risk Factors for Type 1 Diabetes Hypoglycemia

Global Study Reveals Financial Strain in CKD Patients

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.