• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Dozens of potential new antibiotics discovered with free online app

Bioengineer by Bioengineer
November 18, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Photo by L. Brian Stauffer


CHAMPAIGN, Ill. — A new web tool speeds the discovery of drugs to kill Gram-negative bacteria, which are responsible for the overwhelming majority of antibiotic-resistant infections and deaths. The tool also offers insights into discrete chemical changes that can convert drugs that kill other bacteria into drugs to fight Gram-negative infections. The team proved the system works by modifying a Gram-positive drug and testing it against three different Gram-negative bacterial culprits in mouse sepsis. The drug was successful against each.

The researchers report their findings in the journal Nature Microbiology.

“It’s really hard to find new antibiotics for Gram-negative pathogens, because these bacteria have an extra membrane, an outer membrane, that’s very good at keeping antibiotics out,” said University of Illinois chemistry professor Paul Hergenrother, who led the research.

The challenge is so profound that no new classes of drugs to fight Gram-negative bacteria have been approved by the Food and Drug Administration in 50 years, Hergenrother said.

“A few years ago, we discovered the molecular features that allowed an antibiotic compound to surpass this barrier,” he said. “Now, we’ve developed a tool to help others do this as well.”

The new app, called eNTRyway, can quickly evaluate potential drug compounds to determine if they have the molecular characteristics that will enable them to cross the membrane and accumulate inside Gram-negative bacteria.

Developed by graduate student Bryon Drown, the app also can point to ways of modifying existing drugs – for example, those known to work against Gram-positive bacteria – to convert them into potent killers of Gram-negative pathogens.

As a demonstration of this latter capability, postdoctoral researcher and study co-lead author Erica Parker used the tool to identify a drug already in use against Gram-positive infections that – with a basic chemical modification – could potentially be converted to fight Gram-negative bacteria. By adding a positively charged chemical group known as an amine to the drug, Parker created a compound that, further tests revealed, accumulated in Gram-negative bacteria and was effective against several types of Gram-negative infections in mice.

The process of identifying the compound and modifying it took only a few weeks, Hergenrother said.

“Keep in mind that before this, over 100 derivatives of this same compound had been made. We found them in patents and papers,” he said. “And none of these other derivatives had notable Gram-negative activity.”

Hergenrother and his colleagues have so far identified more than 60 antibiotics that are effective only against Gram-positive bacteria but can be converted into drugs to fight Gram-negative infections. These compounds kill bacteria in a variety of different ways. The newly created drug, known as Debio-1452-NH3, interferes with fatty acid synthesis in bacterial – but not mammalian – cells.

Hergenrother said the new tool will speed the process of drug discovery to fight the burgeoning problem of antibiotic-resistant infections.

“We can use this tool to rapidly identify compounds that accumulate in Gram-negative bacteria,” he said.

###

The National Institutes of Health supported this research.

Hergenrother is an affiliate of the Carl R. Woese Institute for Genomic Biology at the U. of I., where he leads the Anticancer Discovery from Pets to People theme.

Editor’s notes:

To reach Paul Hergenrother, call 217-333-0363; email [email protected].

The paper “Implementation of permeation rules leads to a FabI inhibitor with activity against Gram-negative pathogens” is available online and from the U. of I. News Bureau.

Media Contact
Diana Yates
[email protected]
217-333-5802

Related Journal Article

http://dx.doi.org/10.1038/s41564-019-0604-5

Tags: BacteriologyBiochemistryInfectious/Emerging DiseasesMedicine/HealthPharmaceutical SciencesPharmaceutical/Combinatorial Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Scientists Discover True Ferrielectric Material, Unveiling New Polar Order

Scientists Discover True Ferrielectric Material, Unveiling New Polar Order

November 11, 2025
blank

Revolutionary Laser Cooling Achieved: Stable Molecule Trapped Using Deep Ultraviolet Light

November 11, 2025

Breakthrough Oligomer-Based Organic Photodetector Achieves Peak Photoresponse at 1200 nm

November 11, 2025

CYP152 Peroxygenases Pave a Sustainable Pathway to Chiral Molecules

November 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    316 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    208 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    140 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1305 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Measuring Terrestrial Gamma Radiation Risks in Taraba, Nigeria

Tailored ML Models Enhance AAA Outcome Predictions

Optimized Bacillus Production of Hyaluronic Acid

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.