• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Does zinc inhibit or promote growth of kidney stones? Well, both

Bioengineer by Bioengineer
September 6, 2025
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

First study to validate conflicting theories

A funny thing happened on the way to discovering how zinc impacts kidney stones – two different theories emerged, each contradicting the other. One: Zinc stops the growth of the calcium oxalate crystals that make up the stones; and two: It alters the surfaces of crystals which encourages further growth. Now it can be told – both theories are correct as reported in the America Chemical Society journal Crystal Growth & Design by Jeffrey Rimer, Abraham E. Dukler Professor of Chemical and Biomolecular Engineering at the University of Houston, who conducted the first study to offer some resolution to the differing hypotheses.

“What we see with zinc is something we haven’t seen before. It does slow down calcium oxalate crystal growth and at the same time it changes the surface of the crystals, causing defects in the form of intergrowths. These abnormalities create centers for new crystals to nucleate and grow,” reports Rimer, who refers to the effect as a double-edged sword.

The formation of kidney stones is a pathological condition that has increased in frequency among patients, leading to an increased amount of suffering and steep rise in medical costs.

Though calcium oxalate crystals are found everywhere, the most naturally abundant form of these crystals are calcium oxalate monohydrates (COM), the kind found in human kidney stone disease. Along with COM, kidney stones are composed of various hard deposits of inorganic salts and organic compounds (e.g., proteins) crystallizing or sticking together in concentrated urine. They can be severely painful to pass through the urinary tract.

In this study, Rimer and his team used a combination of in vitro experiments and computational modeling to decode the effects of zinc on COM crystal growth.

“The techniques we’re using in our lab to investigate these systems enable us to get a better picture and to deconstruct these complex systems as a means of identifying new ways to prevent kidney stone formation,” said Rimer. “These are enabling tools that allow us to understand at an almost molecular level how various species in urine can regulate crystal growth.”

Rimer’s findings on the dual role of zinc on COM was confirmed by atomic force microscopy measurements showing a unique ability of zinc ions to alter the termination of crystal surfaces.

The team compared the impact of zinc on COM, with similar ions like magnesium.

“We wondered what would happen if we used alternative ions commonly found in urine, such as magnesium, and the answer was nothing. It had little to no effect, whereas zinc had a major effect. This is an excellent demonstration of how subtle differences in the nature of various species impacts their interaction with crystal surfaces,” said Rimer.

###

The paper’s first author is Bryan G. Alamani, a former doctoral student of Rimer’s and now a professor at University of the Philippines Diliman. Rimer also partnered with Julian Gale, Curtin University, Perth, Western Australia.

Media Contact
Laurie Fickman
[email protected]

Original Source

https://uh.edu/news-events/stories/2021/june-2021/06142021-rimer-zinc-role-in-kidney-stones.php

Tags: BiologyBiomedical/Environmental/Chemical EngineeringBiotechnologyInternal MedicineMedicine/HealthPharmaceutical/Combinatorial ChemistryTechnology/Engineering/Computer ScienceUrogenital System
Share12Tweet8Share2ShareShareShare2

Related Posts

Clinicopathological and Molecular Insights into Synovial Sarcoma

October 1, 2025

Graphene Oxide Boosts Nanoimplant Vision in Retinitis Pigmentosa

October 1, 2025

Transcriptomics and Metabolomics Reveal Mycophenolic Acid’s Bladder Cancer Attack

October 1, 2025

Decoding the Molecular Mechanisms Behind Long COVID Brain Fog

October 1, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    89 shares
    Share 36 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    62 shares
    Share 25 Tweet 16
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    57 shares
    Share 23 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Clinicopathological and Molecular Insights into Synovial Sarcoma

Graphene Oxide Boosts Nanoimplant Vision in Retinitis Pigmentosa

Transcriptomics and Metabolomics Reveal Mycophenolic Acid’s Bladder Cancer Attack

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 59 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.