• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Do extremely reddened quasars extinguish star formation?

Bioengineer by Bioengineer
November 15, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: ESO/M. Kornmesser

RIVERSIDE, Calif. (http://www.ucr.edu) — Galaxies formed and grew billions of years ago by accumulating gas from their surroundings, or colliding and merging with other young galaxies. These early stages of galaxy assembly are believed to be accompanied by episodes of rapid star formation, known as starbursts, and rapid growth of a single super-massive black hole in the galactic centers.

A popular paradigm for this evolution has the black holes growing mostly in obscurity, buried deep within the dusty gas. These are rich star-forming galaxies until a blowout of gas and dust (outflow) extinguishes the star formation and halts further growth in the black holes. The outflow then reveals a luminous, rapidly growing black hole in the galactic nucleus. These are known as quasars.

Quasars can eject material at high speeds, possibly helping to drive the blowout and regulate star formation in their host galaxies. However, many aspects of this evolutionary scheme are not understood. Quasars that are partially obscured by dust, which reddens their light in a way that is similar to the sun viewed during sunsets on earth, might provide windows into galactic evolution during the brief transition stage when the starburst is winding down and the visibly luminous quasar is first being revealed in the galactic center.

New research, led by Frederick Hamann, a professor at the Department of Physics and Astronomy at University of California, Riverside, describes the discovery of a unique new population of extremely red quasars. The findings were recently published in the journal the Monthly Notices of the Royal Astronomical Society.

The work by Hamann, combined with previous research by Hamann and others, describes the discovery of the new population of extremely red quasars detected in the Baryon Oscillation Sky Survey (BOSS) of the Sloan Digital Sky Survey (SDSS).

The main goal of this study was to determine the size of the extremely red quasars population and characterize its basic properties compared to the much larger population of quasars in in the BOSS-SDSS survey overall.

The extremely red quasars were selected for study because of their extreme color, but the analysis by Hamann and his fellow researchers reveal a number of peculiar properties consistent with a unique and possibly young evolutionary stage. In particular, they have an exceptionally high incidence of powerful quasar-driven outflows that could be involved in galaxy-wide blowouts of gas and dust.

Overall, the gaseous environments around the black holes appear to be more extended and more energetic than the environments of normal quasars, which might occur at specific times when young gas-rich host galaxies are dumping prodigious amounts of matter into the central black holes, creating an exotic extreme variety of quasars.

More work is needed now to examine the extremely red quasars population further and understand its relationship to the general phenomenon of quasars and, perhaps, to a particularly violent young phase of quasar-galaxy evolution.

The Monthly Notices of the Royal Astronomical Society paper is called "Extremely Red Quasers in BOSS."

###

The other authors are: Nadia L. Zakamska (Johns Hopkins University and Institute for Advanced Study in Princeton, New Jersey), Nicholas Ross (University of Edinburgh in the United Kingdom), Isabelle Paris (INAF Osservatorio Astronomico di Trieste in Italy), Rachael M. Alexandroff (Johns Hopkins University), Carolin Villforth (University of Bath in the United Kingdom), Gordon T. Richards (Drexel University), Hanna Herbst (University of Florida, Gainesville), W. Niel Brandt and Donald P. Schneider (Pennsylvania State University), Ben Cook (Harvard-Smithsonian Center for Astrophysics), Kelly D. Denney (The Ohio State University), and Jenny E. Greene and Michael A. Strauss (Princeton University).

Media Contact

Sean Nealon
[email protected]
951-827-1287
@UCRiverside

http://www.ucr.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Nanoscale All-Optical Polarization Modulation via Nonlinear Interferometry

September 15, 2025

Sanger vs. Next-Gen Sequencing of WWII Victims

September 15, 2025

Next-Gen LED Therapeutics: Challenges and Opportunities

September 15, 2025

Impact of Electrode Material on Radish Germination

September 14, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nanoscale All-Optical Polarization Modulation via Nonlinear Interferometry

Sanger vs. Next-Gen Sequencing of WWII Victims

Next-Gen LED Therapeutics: Challenges and Opportunities

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.