• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, January 12, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

DNA nanorobots target HER2-positive breast cancer cells

Bioengineer by Bioengineer
June 5, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Adapted from Nano Letters 2019, DOI: 10.1021/acs.nanolett.9b01320

According to the Mayo Clinic, about 20% of breast cancers make abnormally high levels of a protein called human epidermal growth factor receptor 2 (HER2). When displayed on the surface of cancer cells, this signaling protein helps them proliferate uncontrollably and is linked with a poor prognosis. Now, researchers have developed a DNA nanorobot that recognizes HER2 on breast cancer cells, targeting them for destruction. They report their results in the ACS journal Nano Letters.

Current therapies for HER2-positive breast cancer include monoclonal antibodies, such as trastuzumab, that bind to HER2 on cells and direct it to the lysosome — an organelle that degrades biomolecules. Lowering the levels of HER2 slows cancer cell proliferation and triggers cell death. Although monoclonal antibodies can lead to the death of cancer cells, they have severe side effects and are difficult and expensive to produce. In a previous study, Yunfeng Lin and colleagues identified a short sequence of DNA, called an aptamer, that recognizes and binds HER2, targeting it for lysosomal degradation in much the same way that monoclonal antibodies do. But the aptamer wasn’t very stable in serum. So the researchers wanted to see if adding a DNA nanostructure, called a tetrahedral framework nucleic acid (tFNA), could increase the aptamer’s biostability and anti-cancer activity.

To find out, the team designed DNA nanorobots consisting of the tFNA with an attached HER2 aptamer. When injected into mice, the nanorobots persisted in the bloodstream more than twice as long as the free aptamer. Next, the researchers added nanorobots to three breast cancer cell lines in petri dishes, showing that they killed only the HER2-positive cell line. The addition of the tFNA allowed more of the aptamer to bind to HER2 than without tFNA, leading to reduced HER2 levels on cell surfaces. Although the nanorobot is much easier and less expensive to make than monoclonal antibodies, it likely needs further improvement before it could be used to treat breast cancer in the clinic, the researchers say.

###

The authors acknowledge funding from the National Natural Science Foundation of China.

The paper’s abstract will be available on June 5 at 8 a.m. Eastern time here: http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.9b01320

The American Chemical Society, the world’s largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Follow us: Twitter | Facebook

Media Contact
Katie Cottingham
[email protected]

Tags: BiochemistryBiotechnologyBreast CancercancerChemistry/Physics/Materials SciencesGenesNanotechnology/MicromachinesRobotry/Artificial Intelligence
Share31Tweet8Share2ShareShareShare2

Related Posts

blank

Cobalt-Catalyzed Thioester Coupling via Siloxycarbene

January 12, 2026
blank

Advancing Alkene Chemistry: Homologative Difunctionalization Breakthrough

January 8, 2026

Biocompatible Ligand Enables Safe In-Cell Protein Arylation

January 8, 2026

Monovalent Pseudo-Natural Products Boost IDO1 Degradation

January 7, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    146 shares
    Share 58 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    71 shares
    Share 28 Tweet 18
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Two Divergent Effectors Control Pm4 Resistance Virulence

Boosting Innovation in Ghana’s Food Processing SMEs

Gene Expression and Growth in Sunit Lambs Analyzed

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.