• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, February 28, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home BIOENGINEERING

DNA Antenna for Solar Energy

Bioengineer by Bioengineer
September 18, 2013
in BIOENGINEERING, Headlines
1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at Chalmers University of Technology have found an effective solution for collecting sunlight for artificial photosynthesis. By combining self-assembling DNA molecules with simple dye molecules, the researchers have created a system that resembles nature’s own antenna system.

Artificial photosynthesis is one of the hot trends in energy research. A large number of the worlds’ energy problems could be resolved if it were possible to recreate the ability plants have to transform solar energy into fuel. The Earth receives enough solar energy every hour to satisfy our energy needs for an entire year.

A research team at Chalmers University of Technology has made a nanotechnological breakthrough in the first step required for artificial photosynthesis. The team has demonstrated that it is possible to use self-assembling DNA molecules as scaffolding to create artificial systems that collect light. The results were recently published in the esteemed scientific Journal of the American Chemical Society.

Self-assembling system
Scaffolding in plants and algae consists of a large number of proteins that organise chlorophyll molecules to ensure effective light collection. The system is complicated and would basically be impossible to construct artificially.

“It’s all over if a bond breaks,” says Jonas Hannestad, PhD of physical chemistry. “If DNA is used instead to organise the light-collecting molecules, the same precision is not achieved but a dynamic self-constructing system arises.”

Recreates a part of nature’s miracle
With a system that builds itself, the researchers have begun to approach nature’s method. If any of the light-collecting molecules break, it will be replaced with another one a second later. In this sense, it is a self-repairing system as opposed to if molecules had been put there by researchers with synthetic organic chemistry.

The sun’s light is moved to a reaction centre in plants and algae so they can synthesise sugars and other energy-rich molecules.

“We can move energy to a reaction centre, but we have not resolved how the reactions themselves are to take place there,” says Bo Albinsson, professor of physical chemistry and head of the research team. “This is actually the most difficult part of artificial photosynthesis. We have demonstrated that an antenna can easily be built. We have recreated that part of the miracle.”

Like pieces in an intricate puzzle
The Chalmers researchers are combining artificial photosynthesis with DNA nanotechnology. When constructing nano-objects that are billionths of a metre, DNA molecules have proven to function very well as building material. This is because DNA strands have the ability to attach to each other in a predictable manner. As long as the correct assembly instructions are given from the start, DNA strands in a test tube can bend around each other and basically form any structure.

“It’s like a puzzle where the pieces only fit together in one specific way,” says Bo Albinsson. “That is why it is possible to draw a fairly complex structure on paper and then know basically what it will look like. We subsequently use those traits to control how light collection will take place.

Story Source:
The above story is reprinted from materials provided by Chalmers University of Technology.

Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Ferrets, cats and civets most susceptible to coronavirus infection after humans

December 10, 2020
IMAGE

Deep Longevity publishes an epigenetic aging clock of unprecedented accuracy

December 8, 2020

How poor oral hygiene may result in metabolic syndrome

December 8, 2020

New findings shed light on the repair of UV-induced DNA damage

December 8, 2020

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    644 shares
    Share 258 Tweet 161
  • People living with HIV face premature heart disease and barriers to care

    82 shares
    Share 33 Tweet 21
  • Global analysis suggests COVID-19 is seasonal

    38 shares
    Share 15 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Public HealthCell BiologyGeneticsMaterialsChemistry/Physics/Materials SciencesBiologyEcology/EnvironmentTechnology/Engineering/Computer SciencecancerMedicine/HealthClimate ChangeInfectious/Emerging Diseases

Recent Posts

  • Sensing suns
  • Predicts the onset of Alzheimer’s Disease (AD) using deep learning-based Splice-AI
  • When foams collapse (and when they don’t)
  • UTA researcher explores effects of trauma at the cellular, tissue levels of the brain
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In