• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, June 1, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How poor oral hygiene may result in metabolic syndrome

Bioengineer by Bioengineer
December 8, 2020
in Biology, Cell Biology, Microbiology, Molecular Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Department of Periodontology,TMDU

Researchers from Tokyo Medical and Dental University (TMDU) identify a novel mechanism by which periodontal disease may cause diabetes

Tokyo, Japan – Periodontal or gum disease is known to be a significant risk factor of metabolic syndrome, a group of conditions increasing the risk for heart disease and diabetes. In a new study, researchers from Tokyo Medical and Dental University (TMDU) discovered that infection with Porphyromonas gingivalis, the bacterium causing periodontal disease, causes skeletal muscle metabolic dysfunction, the precursor to metabolic syndrome, by altering the composition of the gut microbiome.

Periodontal bacteria have long been known to cause inflammation within the oral cavity, but also systemically increase inflammatory mediators. As a result, sustained infection with periodontal bacteria can lead to increases in body weight and lead to increased insulin resistance, a hallmark of type 2 diabetes. The function of insulin is to help shuttle glucose from the blood into tissues, most importantly to skeletal muscle, where one quarter of all glucose in stored. Unsurprisingly, insulin resistance plays a key role in the development of metabolic syndrome, a group of conditions including obesity, altered lipid metabolism, high blood pressure, high blood glucose levels, and systemic inflammation. Although skeletal muscle plays a key role in decreasing blood glucose levels, a direct connection between periodontal bacterial infection and the metabolic function of skeletal muscle has not been established yet.

“Metabolic syndrome has become a widespread health problem in the developed world,” says first author of the study Kazuki Watanabe. “The goal of our study was to investigate how periodontal bacterial infection might lead to metabolic alterations in skeletal muscle and thus to the development of metabolic syndrome.”

To achieve their goal, the researchers first investigated antibody titers to Porphyromonas gingivalis in the blood of patients with metabolic syndrome and found a positive correlation between antibody titers and increased insulin resistance. These results showed that patients with metabolic syndrome were likely to have undergone infection with Porphyromonas gingivalis and thus have mounted an immune response yielding antibodies against the germ. To understand the mechanism behind the clinical observation, the researchers then turned to an animal model. When they gave mice that were fed a high-fat diet (a pre-requisite to developing metabolic syndrome) Porphyromonas gingivalis by mouth, the mice developed increased insulin resistance, and fat infiltration and lower glucose uptake in the skeletal muscle compared with mice that did not receive the bacteria.

But how was this bacterium capable of causing systemic inflammation and metabolic syndrome? To answer this question, the researchers focused on the gut microbiome, the network of bacteria present in the gut and with which the organism co-exists symbiotically. Intriguingly, the researchers found that in mice administered with Porphyromonas gingivalis the gut microbiome was significantly altered, which might decrease insulin sensitivity.

“These are striking results that provide a mechanism underlying the relationship between infection with the periodontal bacterium Porphyromonas gingivalis and the development of metabolic syndrome and metabolic dysfunction in skeletal muscle,” says corresponding author of the study Professor Sayaka Katagiri.

###

The article, “Porphyromonas gingivalis impairs glucose uptake in skeletal muscle associated with altering gut microbiota” has been published in The FASEB Journal at DOI: 10.1096/fj.202001158R

Media Contact
Sayaka KATAGIRI
[email protected]

Original Source

http://www.tmd.ac.jp/english/press-release/20201117-1/index.html

Related Journal Article

http://dx.doi.org/10.1096/fj.202001158R

How poor oral hygiene may result in metabolic syndrome

Share12Tweet8Share2ShareShareShare2

Related Posts

Characterization of morphological and biological aspects of venomous caterpillars of the genus Lonomia Walker (Lepidoptera: Saturniidae) in Colombia

Researchers describe the life cycle of four species of the world’s most venomous caterpillars, genus Lonomia Walker, and discover new parasitoids and host plants

May 31, 2023
Drying codfish

Overfishing linked to rapid evolution of codfish

May 31, 2023

Computational biologist Tal Einav joins LJI faculty

May 31, 2023

Paleontologists discover elephant graveyard in North Florida

May 31, 2023
Please login to join discussion

POPULAR NEWS

  • plants

    Plants remove cancer causing toxins from air

    40 shares
    Share 16 Tweet 10
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    36 shares
    Share 14 Tweet 9
  • Groundbreaking study uncovers first evidence of long-term directionality in the origination of human mutation, fundamentally challenging Neo-Darwinism

    115 shares
    Share 46 Tweet 29
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

DNA damage repaired by antioxidant enzymes

Petit-spot volcanoes involve the deepest known submarine hydrothermal activity, possibly release CO2 and methane

Producing large, clean 2D materials made easy: just KISS

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 50 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In