• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, March 9, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Genetics

DNA clock helps to get measure of people’s lifespans

Bioengineer by Bioengineer
February 2, 2015
in Genetics
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists have identified a biological clock that provides vital clues about how long a person is likely to live. Researchers studied chemical changes to DNA that take place over a lifetime, and can help them predict an individual’s age. By comparing individuals’ actual ages with their predicted biological clock age, scientists saw a pattern emerging.

People whose biological age was greater than their true age were more likely to die sooner than those whose biological and actual ages were the same.

Four independent studies tracked the lives of almost 5,000 older people for up to 14 years. Each person’s biological age was measured from a blood sample at the outset, and participants were followed up throughout the study.

Researchers found that the link between having a faster-running biological clock and early death held true even after accounting for other factors such as smoking, diabetes and cardiovascular disease.
Scientists from the University of Edinburgh, in collaboration with researchers in Australia and the US, measured each person’s biological age by studying a chemical modification to DNA, known as methylation.

The modification does not alter the DNA sequence, but plays an important role in biological processes and can influence how genes are turned off and on. Methylation changes can affect many genes and occur throughout a person’s life.

Dr Riccardo Marioni, of the University of Edinburgh’s Centre for Cognitive Ageing and Cognitive Epidemiology, said: “The same results in four studies indicated a link between the biological clock and deaths from all causes. At present, it is not clear what lifestyle or genetic factors influence a person’s biological age. We have several follow-up projects planned to investigate this in detail.”
The study’s principal investigator, Professor Ian Deary, also from the University of Edinburgh’s Centre for Cognitive Ageing and Cognitive Epidemiology, said: “This new research increases our understanding of longevity and healthy aging. It is exciting as it has identified a novel indicator of aging, which improves the prediction of lifespan over and above the contribution of factors such as smoking, diabetes, and cardiovascular disease.”

Story Source:

The above story is based on materials provided by University of Edinburgh.

Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Amino acid recycling in cells: Autophagy helps cells adapt to changing conditions

December 10, 2020
IMAGE

Cataloging nature’s hidden arsenal: Viruses that infect bacteria

December 10, 2020

Within a hair’s breadth–forensic identification of single dyed hair strand now possible

December 9, 2020

£1m step closer to understanding genetic diseases

December 9, 2020

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    703 shares
    Share 281 Tweet 176
  • People living with HIV face premature heart disease and barriers to care

    86 shares
    Share 34 Tweet 22
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    36 shares
    Share 14 Tweet 9
  • Global analysis suggests COVID-19 is seasonal

    39 shares
    Share 16 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Chemistry/Physics/Materials SciencesInfectious/Emerging DiseasesGeneticsTechnology/Engineering/Computer SciencecancerPublic HealthMedicine/HealthEcology/EnvironmentBiologyCell BiologyMaterialsClimate Change

Recent Posts

  • Research pinpoints unique drug target in antibiotic resistant bacteria
  • How fast is the universe expanding? Galaxies provide one answer.
  • Young white-tailed deer that disperse survive the same as those that stay home
  • Complement inhibition reverses mental losses in preclinical traumatic brain injury models
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In