• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Immunology

Distinguishing resistance from resilience to prolong antibiotic potency

Bioengineer by Bioengineer
December 5, 2018
in Immunology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Defining pathogen responses to first-line antibiotics could prolong their usefulness

IMAGE

Credit: Duke Photography


DURHAM, N.C. — Biomedical engineers at Duke University have shown experimentally that there is more than one flavor of antibiotic resistance and that it could — and should — be taken advantage of to keep first-line antibiotics in our medical arsenal.

In a study appearing online Dec. 7 in the journal Science Advances, the researchers show why doctors should be paying more attention to whether a pathogen is resistant or merely resilient against common beta-lactam antibiotics, such as penicillin and its derivatives.

Resistant strains of bacteria can soldier through a dose of beta-lactam antibiotics with little disturbance to their population levels. Resilient strains, however, suffer a population crash before their community can secrete enough beta-lactamase enzymes to degrade the antibiotic to a tolerable level. If clinicians test an infection by dosing a culture and checking only the end results, they miss the difference between resistant and resilient responses.

“Clinicians have not historically distinguished between these two scenarios,” said Lingchong You, the Paul Ruffin Scarborough Associate Professor of Engineering at Duke. “But as beta-lactam-tolerant pathogens become more common, I believe this distinction could become extremely important.”

While an individual bacterium can be resistant to antibiotics, resilience only arises within a community. This happens when bacterial cells produce enough beta-lactamases to degrade the antibiotics, but not enough to save themselves from the initial onslaught. As some cells die and release more and more of the enzyme, however, the population as a whole eventually rids their environment of the antibiotic.

In the paper, You and Hannah Meredith, now a postdoctoral researcher at the London School of Hygiene and Tropical Medicine, track the populations of several beta-lactam-tolerant strains of bacteria over time when exposed to beta-lactam antibiotics. They then use the responses to quantify the bacteria population’s levels of resistance and/or resilience, creating a method to put values to resistance or resilience for the first time.

In practice, the study offers a framework for researchers to begin designing tests that can swiftly measure an infection for these two separate responses. In You’s opinion, it’s a procedure that will have to become more common in the future.

With a measure of a strain’s resilience in hand, doctors could prescribe a regimen of antibiotics perfectly timed to hit an infection repeatedly during the colony’s weakest points. This approach could allow doctors to continue using first-line antibiotics on pathogens that otherwise would be characterized as resistant and treated with more powerful antibiotics, a practice that will degrade the medicine’s usefulness over time.

“We’re still in a stage where doctors don’t do a detailed diagnosis of what specific infection a patient is suffering from, they just prescribe these antibiotics because they’ll probably work after two weeks. And if they don’t, they’ll just try a different one,” said You. “But I think as these beta-lactam-resistant strains continue to spread around the world and become more common, our diagnoses will have to catch up so we can provide more tailored dosing protocols.”

###

The study was a result of a collaboration between the You lab and infectious disease specialist Deverick Anderson at the Duke School of Medicine, as well as Gregory Batt and his graduate student Virgile Adreani at Inria and Institute Pasteur in Paris, France. Other researchers include a current You lab graduate student, Helena Ma, and two former graduate students, Allison Lopatkin and Anna Lee.

This research was supported by the National Institutes of Health (R01GM098642, R01GM110494, R24DK110492), the Army Research Office (W911NF-14-1-0490), the David and Lucile Packard Foundation, Agence Nationale de la Recherche (ANR-16-CE33-0018, ANR-16-CE12-0025), and the National Science Foundation Graduate Research Fellowship Program.

CITATION: “Applying Ecological Resistance and Resilience to Dissect Bacterial Antibiotic Responses,” Hannah Meredith, Virgile Adreani, Allison Lopatkin, Anna Lee, Deverick Anderson, Gregory Batt, and Lingchong You. Science Advances, Dec. 7, 2018. DOI: 10.1126/sciadv.aau1873

Media Contact
Ken Kingery
[email protected]
919-660-8414

Related Journal Article

http://dx.doi.org/10.1126/sciadv.aau1873

News source: https://scienmag.com/

Tags: BacteriologyBiologyDisease in the Developing WorldEpidemiologyInfectious/Emerging DiseasesMedicine/HealthPublic Health
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

UMass Amherst grad student awarded fellowship for food allergy research

July 23, 2021
IMAGE

Less-sensitive COVID-19 tests may still achieve optimal results if enough people tested

July 22, 2021

Public trust in CDC, FDA, and Fauci holds steady, survey shows

July 20, 2021

USC study shows male-female differences in immune cell function

July 19, 2021
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Scientists Convert Plastic Waste into High-Performance CO2 Capture Materials

MD Anderson and Phoenix SENOLYTIX Forge Strategic Cross-Licensing Partnership to Advance Inducible Switch Technologies in Cell and Gene Therapies

Harnessing Good Vibrations: A New Era in Assisted Reproductive Technology

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.