• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Discovery upturns understanding of how some viruses multiply

Bioengineer by Bioengineer
March 12, 2019
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Study finds that the viral genome can be split between different cells and still cause infection, challenging a fundamental paradigm in virus research

Scientists have shown that different segments of a virus genome can exist in distinct cells but work together to cause an infection.

The findings, published in the open-access journal eLife, upturn a fundamental model in virology that a virus genome enters and replicates within a single cell and then moves on to replicate in another.

Multipartite viruses are intriguing viral systems because their genome is divided into several segments and each is enclosed within a distinct virus particle. It has long been believed that all of the genome segments must move together from cell to cell to cause an infection. But the new study shows this is not the case.

“The chances of a multipartite virus losing an essential genome segment during transmission are estimated to be so high, its ability to successfully cause an infection has been a long-standing mystery,” says first author Anne Sicard, Postdoctoral Researcher at the National Institute for Agricultural Research (INRA), France. “We set out to test a bold possibility: can this virus successfully infect a host even if its genome segments are not together within individual cells?”

To investigate this, the scientists studied the faba bean necrotic stunt virus, which has eight distinct genome segments, and used fluorescent probes to detect the presence of the different viral segments in individual cells of the faba bean plants. Interestingly, the team found that distinct segments are most often found in different cells. This even applied to segments of the genome that code for vital functions such as replication, encapsidation (the process of enclosing viral DNA in a protective coat) and movement of the virus between cells.

These results suggest that the virus can function while its genome segments appear in distinct cells, but more evidence was needed. To further counter the possibility that all genome segments are replicated as a single system within individual cells, they sought to show that the segments could independently accumulate in different cells. They labelled the segments responsible for replication and encapsidation with red and green fluorescence and measured the amounts in different cells to see whether accumulation of one segment in the pair was dependent on the other. They found no link between the amounts of the two different segments at either early or later stages of infection, showing that accumulation of the segments was independent.

To make sense of these findings, they assumed that a viral function can act in a cell even where its genome segment is not present. To test this, they focused on the genome segment responsible for replication (R) and searched for the molecule it encodes – M-Rep – in cells where another segment (S) is replicated. Although the segment R was only detectable in a minority of these cells (about 40%), its product M-Rep was found in nearly 85%. This suggests that either the M-Rep protein itself, or transcripts of the genome segment that makes it, is produced in cells where the segment R is present and then travels to other cells of the host.

“Altogether, we have shown that distinct segments of a virus’ genome are not necessarily together within individual host cells, and that accumulation of one genome segment in a cell is entirely independent of accumulation of the others,” concludes senior author Stéphane Blanc, Research Director at INRA. “It is conceivable that this ‘multicellular’ way of life could be adopted in numerous viral systems and opens up an entirely new research horizon in virology.”

###

Reference

The paper ‘A multicellular way of life for a multipartite virus’ can be freely accessed online at https://doi.org/10.7554/eLife.43599. Contents, including text, figures and data, are free to reuse under a CC BY 4.0 license.

Media contact

Emily Packer, Senior Press Officer

eLife

[email protected]

01223 855373

About eLife

eLife aims to help scientists accelerate discovery by operating a platform for research communication that encourages and recognises the most responsible behaviours in science. We publish important research in all areas of the life and biomedical sciences, including Microbiology and Infectious Disease, which is selected and evaluated by working scientists and made freely available online without delay. eLife also invests in innovation through open-source tool development to accelerate research communication and discovery. Our work is guided by the communities we serve. eLife is supported by the Howard Hughes Medical Institute, the Max Planck Society, the Wellcome Trust and the Knut and Alice Wallenberg Foundation. Learn more at https://elifesciences.org/about.

To read the latest Microbiology and Infectious Disease research published in eLife, visit https://elifesciences.org/subjects/microbiology-infectious-disease.

Media Contact
Emily Packer
[email protected]

Related Journal Article

https://elifesciences.org/for-the-press/3781f48a/discovery-upturns-understanding-of-how-some-viruses-multiply
http://dx.doi.org/10.7554/eLife.43599

Tags: BiologyInfectious/Emerging DiseasesMedicine/HealthMicrobiologyVirology
Share12Tweet7Share2ShareShareShare1

Related Posts

New Phase II Trial Targets Advanced Follicular Lymphoma

New Phase II Trial Targets Advanced Follicular Lymphoma

August 8, 2025
Scientists Develop “Evolution Engine” to Accelerate Protein Reprogramming

Scientists Develop “Evolution Engine” to Accelerate Protein Reprogramming

August 8, 2025

Autoantibodies Trigger Sensory Neuron Pain in Rats

August 8, 2025

New Clue: Odorant Protein Fibrils Cause Smell Loss

August 8, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    76 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    51 shares
    Share 20 Tweet 13
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Japan Unveils Its First Fully Domestically Developed Quantum Computer

New Phase II Trial Targets Advanced Follicular Lymphoma

Eco-Friendly ZIF-7 Carbon for Sensitive Rhodamine B Detection

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.