• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Discovery promising for millions at risk from antibiotic resistance

Bioengineer by Bioengineer
August 17, 2020
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Professor Mark Schembri

There is new hope for approximately 700,000 people who die each year from antibiotic resistant infections, with University of Queensland researchers discovering how bacteria share antibiotic-resistance genes.

UQ’s Professor Mark Schembri said antibiotic resistant bacteria, in particular emerging ‘superbugs’, could lead to around 10 million deaths globally by 2050.

“The diminishing pool of effective antibiotics makes these infections a major threat to human health, so it’s critical we understand the exact mechanics of how antibiotic resistance spreads between different bacteria,” Professor Schembri said.

“In this study, we examined plasmids – self-replicating DNA molecules – which are one of the major drivers for the rapid spread of antibiotic resistance genes between bacteria.

“Many plasmids carry 10 to 15 antibiotic resistance-causing genes, and when they transfer from one bacterial cell to another, two important things happen.

“Firstly, the plasmid is copied so that it is retained by both the donor and recipient cell, and secondly all antibiotic resistance genes are transferred together, meaning that resistance to multiple antibiotics can be transferred and acquired simultaneously.”

Lead author Dr Steven Hancock said the study used a powerful genetic screening system to identify all of the components required for the transfer of an important type of antibiotic resistance plasmid from one bacterial cell to another.

“Our investigation discovered genes encoding the ‘syringe’ component,” Dr Hancock said.

“That is the mechanism through which plasmid DNA is mobilised, as well as a novel controlling element essential for regulation of the transfer process.”

The team also investigated the crystal structure of this controlling element, and revealed how it binds to DNA and activates transcription of other genes involved in the transfer.

Professor Schembri said this deeper understanding would open the door to solutions for this ever-growing health crisis.

“Preventing the transfer of plasmids between bacteria has been a major challenge in reducing the spread of antibiotic resistance genes,” he said.

“By looking at the molecular mechanics, we can start to develop effective solutions for stopping these genes in their tracks.

“Almost everyone has suffered an infection that did not respond to a first round of antibiotic treatment, only to be fortunate enough to be treated with a different antibiotic that worked.

“Now, in extreme cases, we’re seeing common infections caused by superbugs that are resistant to all available antibiotics, highlighting the increasing challenge of antibiotic resistance.

“We need to tackle this now, and I’m excited to see how this new knowledge will lead to novel approaches, potentially saving millions of lives globally.”

###

The research has been published in Nature Microbiology (DOI: 10.1038/s41564-020-0775-0).

The multidisciplinary team included researchers from the UQ School of Chemistry and Molecular Biosciences, the UQ Centre for Clinical Research, the UQ Institute for Molecular Bioscience, the University of Melbourne and the University of Oxford.

Media Contact
Professor Mark Schembri
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41564-020-0775-0

Tags: BacteriologyBiologyCell BiologyGeneticsInfectious/Emerging DiseasesMedicine/HealthMicrobiologyPharmaceutical Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Efficient Framework Models Ionic Materials’ Surface Chemistry

Efficient Framework Models Ionic Materials’ Surface Chemistry

August 15, 2025
blank

Discovery of Intrinsic HOTI-Type Topological Hinge States in Photonic Metamaterials

August 15, 2025

Scientists Employ Innovative Technique in Quest to Unveil Elusive Dark Matter Particle

August 15, 2025

High-Throughput Discovery of Fluoroprobes for Amyloid

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Congress of Neurological Surgeons Unveils First-Ever Guidelines for Managing Functioning Pituitary Adenomas

Amino Acids: The Hidden Currency Fueling Cancer and Immunity

Examining the Impact of Passing Zones on Rural Road Safety

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.