• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, June 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Discovery of enhanced bone growth could lead to new treatments for osteoporosis

Bioengineer by Bioengineer
January 17, 2019
in Health
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In ‘game-changing’ finding, bone mass rose 800 percent after signals were blocked in brains of mice

IMAGE

Credit: Holly Ingraham/UC San Francisco


UCLA and UC San Francisco life scientists have discovered a dramatic pattern of bone growth in female mice — research that could potentially lead to stronger bone density in women and new treatments for osteoporosis in older women.

The researchers found that blocking a particular set of signals from a small number of neurons in the brain causes female, but not male, mice to build super-strong bones and maintain them into old age. These neurons may play an important role in controlling women’s bone density, the researchers said. The study was published Jan. 11 in the journal Nature Communications.

“We think we have identified a new pathway by which the brain regulates bone density that holds great promise because it allows the body to shift new bone formation into overdrive,” said co-author Stephanie Correa, a UCLA assistant professor of integrative biology and physiology, and member of UCLA’s Brain Research Institute.

More than 200 million people worldwide suffer from osteoporosis, in which bones weaken and can easily fracture. Women are at relatively high risk of osteoporosis after menopause.

Correa said the study highlights the importance of studying females, as well as males. “We would have missed this if we had studied only males,” she said. “The differences between what we see in males and females will give us more clues about how these neurons develop, how they work and what they do. The more we understand about how the neurons work, the closer we will get to manipulating them to improve bone health.”

The study began when Correa, then a postdoctoral researcher in the UCSF laboratory of study senior author Holly Ingraham, found that genetically deleting the estrogen receptor protein in neurons in a brain region called the hypothalamus caused altered mice to gain a slight amount of weight, and become less active. Correa expected to find that the animals had put on extra fat or gained lean muscle, but neither of these was the case. To learn the source of the extra weight, she used more sensitive laboratory techniques that could reveal changes in bone density. To her surprise, she discovered that the heavy mice were large-boned. Ingraham’s laboratory showed that their bone mass had increased by as much as 800 percent.

“I was immediately struck by the size of the effect,” Correa said. “We knew right away it was a game-changer and presented a new, exciting direction with potential applications for improving women’s health.”

In addition, the super-dense bones were exceptionally strong.

“Our collaborators who study bone for a living said they’d never seen bone this strong,” said Ingraham, UCSF professor of cellular and molecular pharmacology. “Our current understanding of how the body controls bone growth can’t explain this, which suggests we may have uncovered a completely new pathway that could be used to improve bone strength in older women and others with fragile bones.”

Ingraham’s postdoctoral fellows Candice Herber and William Krause conducted experiments that zeroed in on a specific population of just a few hundred estrogen-sensitive brain cells — located in a region of the hypothalamus called the arcuate nucleus — which appeared to be responsible for these dramatic increases in bone density. The authors hypothesized that estrogen must normally signal these neurons to shift energy away from bone growth, but that deleting the estrogen receptors had reversed that shift.

Additional experiments showed that the altered mice maintained their enhanced bone density well into old age. Normal female mice begin to lose significant bone mass by 20 weeks of age, but the altered mice maintained elevated bone mass well into their second year of life, which is considered old for a mouse.

Herber and Krause were even able to reverse existing bone degeneration in an experimental model of osteoporosis. In female mice that had already lost more than 70 percent of their bone density due to experimentally lowered blood estrogen, deletion of arcuate estrogen receptors caused bone density to rebound by 50 percent in a matter of weeks.

The researchers are now studying how this brain-bone communication occurs, and whether drugs could be developed to increase bone strength in post-menopausal women without the potentially dangerous effects of estrogen replacement therapy.

The role of estrogen in the brain is still poorly understood, said Ingraham, whose laboratory studies how the signaling of estrogen in the brain affects female metabolism at different life stages.

###

The research was funded by the National Institutes of Health and a U.S. Department of Veterans Affairs merit review grant.

Media Contact
Stuart Wolpert
[email protected]
310-206-0511

Related Journal Article

http://dx.doi.org/10.1038/s41467-018-08046-4

Tags: AgingGerontologyMedicine/HealthOrthopedic Medicine
Share12Tweet8Share2ShareShareShare2

Related Posts

Imaging Breakthroughs Reveal Early Parkinson’s Signs

Imaging Breakthroughs Reveal Early Parkinson’s Signs

June 18, 2025
Sublattice Reconstruction Boosts Optical Nonlinearities 500x

Sublattice Reconstruction Boosts Optical Nonlinearities 500x

June 18, 2025

Measuring Vinyl Acetate Exposure from Consumer Products

June 18, 2025

Heat Shock Proteins Signal Neuron-Glia Aging Talk

June 18, 2025
Please login to join discussion

POPULAR NEWS

  • Green brake lights in the front could reduce accidents

    Study from TU Graz Reveals Front Brake Lights Could Drastically Diminish Road Accident Rates

    161 shares
    Share 64 Tweet 40
  • New Study Uncovers Unexpected Side Effects of High-Dose Radiation Therapy

    76 shares
    Share 30 Tweet 19
  • Pancreatic Cancer Vaccines Eradicate Disease in Preclinical Studies

    71 shares
    Share 28 Tweet 18
  • How Scientists Unraveled the Mystery Behind the Gigantic Size of Extinct Ground Sloths—and What Led to Their Demise

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Framework Introduced to Define and Measure the Biology of Health

Imaging Breakthroughs Reveal Early Parkinson’s Signs

Navigating New Frontiers: ESG Lending and Tech Investments Propel Stability and Growth in BRICS Banks

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.