• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, December 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Discovery of aging mechanism for hematopoietic stem cells

Bioengineer by Bioengineer
December 24, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Limited rejuvenation of aged hematopoietic stem cells in young bone marrow niche

IMAGE

Credit: ©Atsushi IWAMA, The Institute of Medical Science, The University of Tokyo

By transferring mouse aged hematopoietic stem cells (aged HSCs, *1) to the environment of young mice (bone marrow niche, *2), it was demonstrated that the pattern of stem cell gene expression was rejuvenated to that of young hematopoietic stem cells. On the other hand, the function of aged HSCs did not recover in the young bone marrow niche. The epigenome (DNA methylation, *3) of aged HSCs did not change significantly even in the young bone marrow niche, and DNA methylation profiles were found to be a better index than the gene expression pattern of aged HSCs.

A research group led by Professor Atsushi Iwama at the Division of Stem Cell and Molecular Medicine, The Institute of Medical Science, The University of Tokyo (IMSUT) announced these world-first results and was published in the Journal of Experimental Medicine (online) on November 24th.

“The results will contribute to the development of treatments for age-related blood diseases,” states lead scientist, Professor Iwama at IMSUT.

Focus on changes in aged HSCs in the bone marrow niche

The research group investigated whether rejuvenating aged HSCs in a young bone marrow niche environment would rejuvenate.

Tens of thousands of aged hematopoietic stem/progenitor cells collected from 20-month-old mice were transplanted into 8-week-old young mice without pretreatment such as irradiation. After two months of follow-up, they collected bone marrow cells and performed flow cytometric analysis.

The research team also transplanted 10-week-old young mouse HSCs for comparison. In addition, engrafted aged HSCs were fractionated and RNA sequence analysis and DNA methylation analysis were performed.

They found that engrafted aged HSCs were less capable of producing hematopoietic cells than younger HSCs. They also showed that differentiation of aged HSCs into multipotent progenitor cells was persistently impaired even in the young bone marrow niche, and that the direction of differentiation was biased. It was found that the transfer of aged HSCs to the young bone marrow niche does not improve their stem cell function.

See the paper for details.

A more detailed analysis may reveal mechanisms that irreversibly affect aged HSC function

Aging studies focusing on HSCs have been actively pursued in mice using a bone marrow transfer model. However, the effect of aging on HSCs remains to be clarified.

Professor Iwama states as follows.”This study has a significant impact because it clarified the effect of aging on HSCs. Our results are expected to contribute to further elucidation of the mechanism of aging in HSCs and understanding of the pathogenic mechanism of age-related blood diseases.”

###

Research Notes

(*1) Aged hematopoietic stem cells (aged HSCs)

The functions and characteristics of hematopoietic stem cells change with age. The ability to produce blood cells is reduced and differentiation is biased, increasing the risk of developing myeloid tumors.

(*2) Bone marrow niche

The microenvironment in the bone marrow that is essential for maintaining hematopoietic stem cells.

(*3) Epigenome (DNA methylation)

Chemical modification of genomic DNA and histone proteins. The epigenome is acquired and changes according to cell conditions. DNA methylation acts to suppress gene expression (transcription).

Media Contact
Professor Atsushi IWAMA
[email protected]

Original Source

https://www.ims.u-tokyo.ac.jp/imsut/en/about/press/page_00027.html

Related Journal Article

http://dx.doi.org/10.1084/jem.20192283

Tags: AgingBiologyCell BiologyGerontologyHematologyMedicine/HealthMolecular Biology
Share13Tweet8Share2ShareShareShare2

Related Posts

Radiotherapy Plus Anti-PD-1 Boosts Liver Cancer Ferroptosis

December 19, 2025

Peptidyl-tRNA Hydrolase 2 Suppresses Peripartum Heart Failure

December 19, 2025

Large Language Models in Obesity: A Review

December 19, 2025

Evaluating Self-Assessment Tools for Disaster Nursing Competencies

December 19, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    72 shares
    Share 29 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Radiotherapy Plus Anti-PD-1 Boosts Liver Cancer Ferroptosis

Peptidyl-tRNA Hydrolase 2 Suppresses Peripartum Heart Failure

Large Language Models in Obesity: A Review

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.