• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, March 1, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Direct observation of a single electron’s butterfly-shaped distribution in titanium oxide

Bioengineer by Bioengineer
October 28, 2020
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A valence electron in titanium oxide has been imaged at a resolution of 0.2 Angstroms using synchrotron X-ray diffraction and a new Fourier synthesis method that can determine the orbital states in materials regardless of their physical properties.

IMAGE

Credit: Shunsuke Kitou

The functions and physical properties of solid materials, such as magnetic order and unconventional superconductivity, are greatly influenced by the orbital state of the outermost electrons (valence electrons) of the constituent atoms. In other words, it could be said that the minimal unit that determines a solid material’s physical properties consists of the orbitals occupied by the valence electrons. Moreover, an orbital can also be considered a minimal unit of “shape,” so the orbital state in a solid can be deduced from observing the spatially anisotropic distribution of electrons (in other words, from how the electron distribution deviates from spherical symmetry).

The orbital states in elements are basic knowledge that can be found in quantum mechanics or quantum chemistry textbooks. For example, it is known that the 3d electrons in transition elements such as iron and nickel have characteristic butterfly-type or gourd-type shapes (see Fig. 1(a)). However, until now, it has been extremely difficult to observe the real-space distribution of such electron orbitals directly.

Now, a research collaboration between Nagoya University, University of Wisconsin-Milwaukee, Japan’s RIKEN and Institute for Molecular Science, the University of Tokyo, and the Japan Synchrotron Radiation Research Institute (JASRI), has observed the spatial distribution of a single valence electron at the centre of an octahedron-shaped titanium oxide molecule, using synchrotron X-ray diffraction (see Fig. 1(b)).

To analyse the X-ray diffraction data from the titanium oxide sample, the team developed a Fourier synthesis method in which data from each titanium ion’s inner shell electrons – which do not contribute to the compound’s physical properties – are subtracted from the total electron distribution of each ion, leaving only the butterfly-shaped valence electron density distribution. The method is called {it core differential Fourier synthesis} (CDFS).

Furthermore, a closer look at the butterfly-shaped electron density revealed that high density remained in the central region (see Fig. 2(a)), in contrast with bare titanium in which electrons do not exist at the centre because of the node of the 3d orbital (see Fig. 1(a)). After careful data analysis, it was found that the electron density at the centre consists of the valence electrons occupying the hybridized orbital generated by the bond between titanium and oxygen. First-principles calculations confirmed this non-trivial orbital picture and reproduced the results of the CDFS analysis very well (see Fig. 2(b)). The image directly demonstrates the well-known Kugel-Khomskii model of the relationship between the magnetic and orbital-ordered states.

The CDFS method can determine the orbital states in materials regardless of the physical properties and can be applied to almost all elements and without the need for difficult experiments or analytical techniques: the method requires neither quantum-mechanical nor informatic models, so bias introduced by analysts is minimized. The results may signal a breakthrough in the study of orbital states in materials. The CDFS analysis will provide a touchstone for a complete description of the electronic state by first-principles or other theoretical calculations.

###

This work was supported by a Grant-in-Aid for Scientific Research (No. JP23244074, JP19J11697) from JSPS. The synchrotron radiation experiments were performed at SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal No. 2011B0083, and No. 2019A0070).

Media Contact
Shunsuke Kitou
[email protected]

Original Source

http://www.nagoya-u.ac.jp/en/

Related Journal Article

http://dx.doi.org/10.1103/PhysRevResearch.2.033503

Tags: Atomic PhysicsAtomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesMaterialsMolecular Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Boston College physicist Brian Zhou receives NSF CAREER Award

March 1, 2021
IMAGE

Sensing suns

February 28, 2021

C-Path and Global Partners launch Ataxia Consortium

February 26, 2021

Quantum quirk yields giant magnetic effect, where none should exist

February 26, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    648 shares
    Share 259 Tweet 162
  • People living with HIV face premature heart disease and barriers to care

    82 shares
    Share 33 Tweet 21
  • Global analysis suggests COVID-19 is seasonal

    38 shares
    Share 15 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

MaterialsBiologyPublic HealthEcology/EnvironmentcancerCell BiologyGeneticsTechnology/Engineering/Computer ScienceMedicine/HealthInfectious/Emerging DiseasesClimate ChangeChemistry/Physics/Materials Sciences

Recent Posts

  • Microplastic sizes in Hudson-Raritan Estuary and coastal ocean revealed
  • Cancer: a new killer lymphocyte enters the ring
  • Single cell sequencing opens new avenues for eradicating leukemia at its source
  • Boston College physicist Brian Zhou receives NSF CAREER Award
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In