• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, June 29, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Dipole orientation: New dimension in super-resolution microscopy

Bioengineer by Bioengineer
December 8, 2016
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Recently, a new polarization-dipole azimuth-based super-resolution technique has been proposed by a group of researchers in Peking University (China), Tsinghua University (China), and University of Technology Sydney (Australia). It not only provides a new dimension for super-resolution, but also provides a timely solution to a recent hot debate in the field.

Since fluorescence polarization was discovered on 1926, various fluorescence anisotropy techniques have been developed to study dipole orientation of fluorophores. However, in the case of super-resolution, while other properties of fluorescence, such as intensity, spectrum, fluorescence lifetime, etc., have been well applied, little attention is paid to the direction of the fluorescence dipole (polarization). In 2014, Walla team published an article on Nature Methods to achieve sparse reconstructed super-resolution imaging by polarization-modulating excitation. In early 2016, Keller group published a comment on this article on Nature Methods, which stated that fluorescence polarization adds little additional information to (fluorescence intensity) super-resolution. This raised an interesting debate: whether the polarization modulation can bring super-resolution information or not?

However, both the Walla and Keller groups investigated this problem from a conventional fluorescence intensity point of view. Taking into account fluorescence intensity and fluorescence anisotropy, this work introduces the dipole angle to distinguish fluorescence through the fourth dimension of the fluorescence, and perfectly answers this controversy.

Traditional fluorescence anisotropy techniques are limited to samples of relative uniform polarization. Fluorescence polarization would be affected by a bulk of fluorophores due to Abbe's diffraction limit, when it comes to complex samples. SDOM utilizes polarization modulation of excitation laser and demodulation of both intensity and polarization, which improves the spatial resolution as well as the detection accuracy of dipole orientation. With the additional information of fluorescence polarization imposed on the original super-resolution intensity image, Xi group has observed several interesting findings in biological samples. At the same time, SDOM technology has a very fast imaging speed (up to 5 frames per second super resolution), the excitation light power requirements are very low (milliWatts level), is ideal for live cell observation. The observation of living yeast cells is demosntrated herein.

This work has been published on Light: Science & Applications on Oct. 21, 2016.

###

Media Contact

Yaobiao Li
[email protected]

http://www.ciomp.ac.cn/

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Berkeley Surface Emitting Laser

New single-mode semiconductor laser delivers power with scalability

June 29, 2022
Studying chemicals in wastewater

Monitoring COVID-19: Could medicine found in wastewater provide an early warning?

June 29, 2022

Ice Age wolf DNA reveals dogs trace ancestry to two separate wolf populations

June 29, 2022

Destruction and recovery of kelp forests driven by changes in sea urchin behavior

June 29, 2022
Please login to join discussion

POPULAR NEWS

  • Pacific whiting

    Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    37 shares
    Share 15 Tweet 9
  • University of Miami Rosenstiel School selected for National ‘Reefense’ Initiative focusing on Florida and the Caribbean

    35 shares
    Share 14 Tweet 9
  • Saving the Mekong delta from drowning

    37 shares
    Share 15 Tweet 9
  • Sharks may be closer to the city than you think, new study finds

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

WeaponryUrogenital SystemVaccineZoology/Veterinary ScienceWeather/StormsVirusUrbanizationUniversity of WashingtonVaccinesVirologyVehiclesViolence/Criminals

Recent Posts

  • New single-mode semiconductor laser delivers power with scalability
  • Monitoring COVID-19: Could medicine found in wastewater provide an early warning?
  • Ice Age wolf DNA reveals dogs trace ancestry to two separate wolf populations
  • Destruction and recovery of kelp forests driven by changes in sea urchin behavior
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....