• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Did the first cells evolve in soda lakes?

Bioengineer by Bioengineer
March 19, 2024
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Soda lakes, which are dominated by dissolved sodium and carbonate species, could have provided the right conditions for the first cells, according to a study. Early cells may have been composed of RNA inside lipid membranes. But RNA function requires divalent cations such as Mg2+, which disrupt primitive membranes made of fatty acids. The question arises whether the relatively low concentrations of Mg2+ found in soda lakes may have allowed both RNA and membranes to function together. To explore this possibility, Zachary Cohen and colleagues collected water from Last Chance Lake and Goodenough Lake in Canada after seasonal evaporation. These soda lakes each contained ~1 M Na+ and ~1 mM Mg2+ at pH 10. The authors found that spontaneous extension of short RNA primers occurred in lake water at a rate comparable to the rates in standard laboratory conditions. The authors added fatty acids, which could have been available on the early Earth, to the lake water to see if the molecules would assemble into membranes.  The membranes formed in dilute water that simulates a rainfall event, and the membranes persisted even when surrounded by concentrated lake water from the dry season. According to the authors, soda lakes on the early Earth could have supported key features of protocell development, with RNA copying and ribozyme activity taking place in the dry season and vesicle formation occurring during the wet season.

Last Chance Lake

Credit: Zachary R. Cohen

Soda lakes, which are dominated by dissolved sodium and carbonate species, could have provided the right conditions for the first cells, according to a study. Early cells may have been composed of RNA inside lipid membranes. But RNA function requires divalent cations such as Mg2+, which disrupt primitive membranes made of fatty acids. The question arises whether the relatively low concentrations of Mg2+ found in soda lakes may have allowed both RNA and membranes to function together. To explore this possibility, Zachary Cohen and colleagues collected water from Last Chance Lake and Goodenough Lake in Canada after seasonal evaporation. These soda lakes each contained ~1 M Na+ and ~1 mM Mg2+ at pH 10. The authors found that spontaneous extension of short RNA primers occurred in lake water at a rate comparable to the rates in standard laboratory conditions. The authors added fatty acids, which could have been available on the early Earth, to the lake water to see if the molecules would assemble into membranes.  The membranes formed in dilute water that simulates a rainfall event, and the membranes persisted even when surrounded by concentrated lake water from the dry season. According to the authors, soda lakes on the early Earth could have supported key features of protocell development, with RNA copying and ribozyme activity taking place in the dry season and vesicle formation occurring during the wet season.



Journal

PNAS Nexus

Article Title

Natural soda lakes provide compatible conditions for RNA and membrane function that could have enabled the origin of life

Article Publication Date

19-Mar-2024

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

How Cells Manage Stress: New Study Uncovers the Role of Waste Disposal Systems in Overinflated Balloons

August 21, 2025
Forces Within Tissues Sculpt Developing Organs

Forces Within Tissues Sculpt Developing Organs

August 21, 2025

Uncovering Molecular Connections in HIV Comorbidities: Insights from a Big Data Study

August 21, 2025

Hidden Genetic Costs: Inbreeding and Dominance Effects

August 21, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary Laser ‘Comb’ Allows for Ultra-Precise and Rapid Chemical Identification

Consistent Sleep Patterns Linked to Enhanced Heart Failure Recovery, Study Reveals

New Fluorescent Imaging Method Enables Rapid and Safe Detection of Basal Cell Carcinoma

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.