• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, January 23, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Did early life need long, complex molecules to make cell-like compartments?

Bioengineer by Bioengineer
November 23, 2020
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers make functional membraneless “protocells” out of short polymers

IMAGE

Credit: Fatma Pir Cakmak, Penn State

Protocell compartments used as models for an important step in the early evolution of life on Earth can be made from short polymers. The short polymers, which better approximate the likely size of molecules available on the early Earth, form the compartments through liquid-liquid phase separation in the same manner as longer polymers. Although they have no membrane separating them from their environment, the protocells can sequester RNA and maintain distinct internal microenvironments, in some ways even outperforming similar compartments made from longer polymers.

A paper describing the research, by Penn State scientists, appears November 23, 2020 in the journal Nature Communications.

“An important step for the early evolution of life on Earth is compartmentalization,” said Christine Keating, Distinguished Professor of Chemistry at Penn State and one of the leaders of the research team. “Living things need to be somehow separated from their environment. We wanted to know if we could make compartments that could function like protocells out of molecules that were more similar in size to the molecules that would have been available on Earth when life was beginning.”

The researchers create the compartments, called ‘complex coacervates,’ by combining two oppositely charged polymers in a solution. The polymers are attracted to each other and can form droplets through liquid-liquid phase separation, similar to oil droplets forming in a salad dressing as it separates. Depending on the conditions, the polymers can remain uniformly distributed in the solution, they can form the protocell-like coacervates, or they can clump together to form solid aggregates.

The researchers compared different lengths of polymers composed of charged units, from 1 to 100 units. The longer polymers have higher charges, are more strongly attracted to each other, and can form compartments more easily in a broader set of experimental conditions.

“We tested a large number of combinations of polymers types and lengths to try to establish the parameters for compartment formation,” Fatma Pir Cakmak, a graduate student at Penn State at the time of the research and first author of the paper. “We found that polymers as short as five units long could form stable compartments.”

The researchers then tested the ability of the compartments made from the short polymers to perform certain functions of a protocell. The compartments were stable in a variety of salt concentrations and, depending on the polymer combinations, were able to maintain an apparent pH inside that compartment that was different than the pH of the surrounding solution.

“We don’t know what the conditions were in which life formed,” said Saehyun Choi, a graduate student at Penn State and one of the authors of the paper. “It could have been in the ocean, in brackish water, or in freshwater. The compartments were stable in salt concentrations high enough to suggest that they are a relevant model for any of these situations.”

When single-stranded RNA molecules were added to the solution, compartments made from shorter polymers were better able to sequester the RNA than compartments made from longer polymers. RNA molecules inside the compartments were concentrated by as much as 500 times the surrounding solution. Double-stranded RNA molecules were also sequestered by the compartments and were more stable in the compartments made from shorter polymers.

The research team also tested the ability of RNA to maintain its folding and three-dimensional structure inside the compartments.

“Under the conditions that we tested, RNA formed much of its secondary structure but did not maintain its fully native folding inside the compartments,” said McCauley O. Meyer, a graduate student at Penn State and an author of the paper. “We saw basically no difference based on the size of the polymers forming the compartments, so it may just be that we didn’t have enough of a key component–something like magnesium, which is important for fully native RNA folding.”

The results show that even with simple small components, compartments that are capable of many of the hallmarks of protocells can be made.

“It’s a powerful finding to see that we can make these compartments out of such short polymers and in some ways, like accumulating RNAs, they function better than ones made from longer polymers,” said Keating. “Our findings suggest that even if only smaller molecules were available on the early Earth, functional compartments could form. Over time, larger molecules could have been incorporated as they became available.”

The researchers emphasize that the polymers they are using capture the essence of plausible early-Earth molecules but are likely not like the ones available on the early Earth, except in size. They stated that they are not attempting to recreate the conditions of early Earth that led to the evolution of life.

“What we’re after is not the precise transcript of what happened on Earth billions of years ago,” said Phil Bevilacqua, Distinguished Professor of Chemistry and of Biochemistry and Molecular Biology at Penn State and one of the leaders of the research team. “Instead, we want to know how feasible it is for life to start. We’re exploring boundary conditions, and you have to have short polymers before you get long polymers.”

###

The research was funded by the NASA Exobiology program.

Media Contact
Sam Sholtis
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-19775-w

Tags: BiochemistryBiologyCell BiologyEvolutionGeneticsMaterialsMolecular BiologyPolymer Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

New technique builds super-hard metals from nanoparticles

January 22, 2021
IMAGE

Defects may help scientists understand the exotic physics of topology

January 22, 2021

Highly functional membrane developed for producing freshwater from seawater

January 22, 2021

AI: ensuring that humans remain in the center

January 22, 2021
Next Post
IMAGE

AI plots sustainable materials

IMAGE

CCNY researchers overcome barriers for bio-inspired solar energy harvesting materials

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    54 shares
    Share 22 Tweet 14
  • People living with HIV face premature heart disease and barriers to care

    65 shares
    Share 26 Tweet 16
  • New drug form may help treat osteoporosis, calcium-related disorders

    40 shares
    Share 16 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Technology/Engineering/Computer ScienceBiologyClimate ChangePublic HealthMaterialsInfectious/Emerging DiseasesMedicine/HealthcancerGeneticsCell BiologyEcology/EnvironmentChemistry/Physics/Materials Sciences

Recent Posts

  • Regulating the ribosomal RNA production line
  • A professor from RUDN University developed new liquid crystals
  • New technique builds super-hard metals from nanoparticles
  • No more needles for diagnostic tests?
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In