• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, December 10, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Diapers can be recycled 200 times faster with light

Bioengineer by Bioengineer
October 25, 2023
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Superabsorbers can be found in diapers as well as in a number of other hygiene and medical products, such as bandages and dressing materials. So far, strong acids have been required to recycle sodium polyacrylate, the highly absorbent material. These crosslinked polymers are insoluble in water. At high temperature, they do not melt, but only degrade. The acids, however, “cut” the chains stabilizing the polymers after about 16 hours at 80 degrees Celsius and, hence, enabled recycling. This process is complex and expensive, which is why superabsorbers have hardly been reused. Annually, about two million tons of them end up in the trash or are incinerated.

Superabsorbers become liquid under UV light after they have taken up sufficient water. Then, they can be reused. (Collage: Ken Pekarsky, KIT)

Credit: Collage: Ken Pekarsky, KIT

Superabsorbers can be found in diapers as well as in a number of other hygiene and medical products, such as bandages and dressing materials. So far, strong acids have been required to recycle sodium polyacrylate, the highly absorbent material. These crosslinked polymers are insoluble in water. At high temperature, they do not melt, but only degrade. The acids, however, “cut” the chains stabilizing the polymers after about 16 hours at 80 degrees Celsius and, hence, enabled recycling. This process is complex and expensive, which is why superabsorbers have hardly been reused. Annually, about two million tons of them end up in the trash or are incinerated.

 

Liquid in Five Minutes Instead of 16 Hours

Researchers from the Institute of Biological and Chemical Systems, the Institute for Biological Interfaces, and the Institute for Chemical Technology and Polymer Chemistry of KIT have now found that the crosslinked sodium polyacrylate polymers degrade under UV light after the uptake of water. “The chains that link the polymers are broken by the light. Then, they are so loose that they swim in water and turn into liquid fibers,” Pavel Levkin, Professor at the Institute of Biological and Chemical Systems, explains. For their studies, the researchers cut out the liners from conventional diapers, wetted them with water, and exposed them to a lamp of 1000 W. After five minutes already did the solid material turn into a liquid that dropped into a collector. “This method with UV light is about 200 times faster than with acids,” Levkin says.

 

The Recycled Polymers Can Be Used in Various Ways

The team then used known processes to convert the liquid into new adhesives and dyes. “The observation that the substance is soluble and processible was of high importance. Most probably, it can be turned into many other products,” the scientist explains.

For their tests, the researchers used clean diapers. But it is also possible to separate the superabsorbers from used diapers. “Hence, there is no reason why close-to-reality use should not be possible,” Levkin says. The recycling method can be optimized ecologically at no cost by using solar power. “We have found a promising strategy for recycling superabsorbers. This will significantly reduce environmental pollution and contribute to a more sustainable use of polymers.” 

 

Original Publication

Shuai Li, Johannes M. Scheiger, Zhenwu Wang, Birgit Huber, Maxi Hoffmann, Manfred Wilhelm, Pavel A. Levkin: Diapers to Thickeners and Pressure-Sensitive Adhesives: Recycling of Superabsorbers via UV Degradation. ACS Appl. Mater. Interfaces, 2023. https://doi.org/10.1021/acsami.3c06999

 

Being “The Research University in the Helmholtz Association”, KIT creates and imparts knowledge for the society and the environment. It is the objective to make significant contributions to the global challenges in the fields of energy, mobility, and information. For this, about 9,800 employees cooperate in a broad range of disciplines in natural sciences, engineering sciences, economics, and the humanities and social sciences. KIT prepares its 22,300 students for responsible tasks in society, industry, and science by offering research-based study programs. Innovation efforts at KIT build a bridge between important scientific findings and their application for the benefit of society, economic prosperity, and the preservation of our natural basis of life. KIT is one of the German universities of excellence.



Journal

ACS Applied Materials & Interfaces

DOI

10.1021/acsami.3c06999

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Diapersto Thickenersand Pressure-SensitiveAdhesives:Recyclingof Superabsorbersvia UV Degradation

Article Publication Date

7-Sep-2023

COI Statement

The authors declare no competing financial interest.

Share12Tweet8Share2ShareShareShare2

Related Posts

Normal and enhanced aurora

When is an aurora not an aurora?

December 8, 2023
Rhodamine dyes

A fork in the rhod: Janelia researchers unveil comprehensive collection of rhodamine-based fluorescent dyes

December 8, 2023

Atlantic Ocean near Bermuda is warmer and more acidic than ever, 40 years of observation show

December 8, 2023

Physicists ‘entangle’ individual molecules for the first time, hastening possibilities for quantum information processing

December 7, 2023

POPULAR NEWS

  • Figure 1

    Understanding rapid tendon regeneration in newts may one day help human athletes

    85 shares
    Share 34 Tweet 21
  • Photonic chip that ‘fits together like Lego’ opens door to semiconductor industry

    36 shares
    Share 14 Tweet 9
  • Study finds increasingly popular oral nicotine pouches do little to curb smokers’ cravings

    35 shares
    Share 14 Tweet 9
  • SMART researchers pioneer novel microfluidic method to optimise bone marrow stem cell extraction for advanced cell therapies

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

ASH: Targeted oral therapy reduced disease burden and improved symptoms for patients with rare blood disorder

TTUHSC’s ARPA-H membership will spur innovation, improve access for West Texas patients

Tracing how the infant brain responds to touch with near-infrared spectroscopy

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 58 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In