• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, January 26, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Detecting melanoma early, without a biopsy

Bioengineer by Bioengineer
July 14, 2016
in Cancer
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

FORT COLLINS, COLO. – Melanoma is a form of skin cancer that becomes dangerous when it spreads, but is treatable in its early stages. Doctors diagnose melanoma by cutting away a piece of a suspicious skin lesion — a procedure known as a biopsy — and testing it for malignant cells.

It’s an imperfect, invasive method that Colorado State University researcher Jesse Wilson wants to improve. His goal is to make early detection of melanoma faster, cheaper and less invasive than a biopsy.

An assistant professor in the Department of Electrical and Computer Engineering and in the School of Biomedical Engineering, Wilson’s expertise is in pushing the boundaries of biomedical optics. He has received a one-year, $30,000 grant from the Colorado Clinical and Translational Sciences Institute to develop a new microscope that can distinguish between benign and malignant pigmented skin lesions, without the need for biopsy.

If his idea works, it could lead to low-cost, in-vivo imaging of melanin, the skin pigment that’s made by cells called melanocytes, which can become cancerous and lead to melanoma.

The grant is through the CCTSI’s “CO-Pilot” program, which provides start-up funds for early-career researchers embarking on multidisciplinary new ideas. Wilson, who did his undergraduate, master’s and Ph.D. work at CSU, has returned to campus as a faculty member to continue applying cutting-edge biomedical optics to early cancer detection.

The CO-Pilot is funding Wilson’s development of an experimental microscope that uses a technology called pump-probe, which can provide contrast between normal tissue and melanoma without stains or dyes.

Pump-probe is a type of multiphoton microscopy, an established technique used for deep imaging of living tissue. In standard multiphoton microscopy, an extremely short laser pulse is used to excite fluorescent molecules in the sample, which can then be detected when they light up.

In pump-probe, excited molecules are detected not through fluorescence, but through their interactions with a second laser pulse. This allows pump-probe to distinguish molecules based on their absorption properties, which provide strong contrast between different types of melanin.

Pump-probe microscopes that can detect melanoma were developed in the lab of Warren Warren at Duke University, where Wilson completed his postdoctoral training. However, these microscopes require a short-pulse laser source that costs upwards of $300,000 – a major barrier to commercializing the technology for widespread use.

That’s the problem Wilson will tackle with the CO-Pilot grant. He is designing a pump-probe microscope that can distinguish between benign and malignant melanoma in vivo, but built around a simpler laser source that’s already widely used in telecommunications applications to encrypt voice communications. That laser only costs about $5,000, and would make the pump-probe technology more realistic for melanoma applications.

Wilson will work with Ali Pezeshki, associate professor in ECE and mathematics, on the signal processing that will be central to constructing images with the new microscope. He also plans to collaborate with Dan Gustafson, director of research at the Flint Animal Cancer Center.

Wilson’s lab is also pursuing other pump-probe applications, including imaging cytochromes, molecules involved in metabolic activities that can’t be imaged with conventional techniques.

###

Media Contact

Anne Ju Manning
[email protected]
970-491-7099
@ColoStateNews

Home

The post Detecting melanoma early, without a biopsy appeared first on Scienmag.

Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

University of Cincinnati research unveils possible new combo therapy for head and neck cancer

January 22, 2021
IMAGE

CT identifies patients with high-risk nonalcoholic fatty liver disease (NAFLD)

January 22, 2021

New combination of immunotherapies shows great promise for treating lung cancer

January 22, 2021

Catching cancer in the act

January 21, 2021
Next Post
blank

Cancer stem cells in ‘robbers cave’ may explain poor prognosis for obese patients

Nanoparticle versus cancer

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    54 shares
    Share 22 Tweet 14
  • People living with HIV face premature heart disease and barriers to care

    68 shares
    Share 27 Tweet 17
  • New drug form may help treat osteoporosis, calcium-related disorders

    41 shares
    Share 16 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Medicine/HealthInfectious/Emerging DiseasesBiologycancerCell BiologyMaterialsGeneticsClimate ChangeTechnology/Engineering/Computer ScienceEcology/EnvironmentPublic HealthChemistry/Physics/Materials Sciences

Recent Posts

  • Impact of patient-reported symptom information on lumbar spine MRI Interpretation
  • Governments need to set clear rules for vaccinating health care workers against COVID-19
  • In ED patients with chest and abdominal pain, care delivered by physicians and APPs is similar
  • New book on Influenza: The Cutting Edge from CSHLPress
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In