• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Designer-defect clamping of ferroelectric domain walls for more-stable nanoelectronics

Bioengineer by Bioengineer
January 21, 2020
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Improved stability a significant step forward for domain-wall nanoelectronic data storage

IMAGE

Credit: FLEET

A UNSW study published today in Nature Communications presents an exciting step towards domain-wall nanoelectronics: a novel form of future electronics based on nano-scale conduction paths, and which could allow for extremely dense memory storage.

FLEET researchers at the UNSW School of Materials Science and Engineering have made an important step in solving the technology’s primary long-standing challenge of information stability.

Domain walls are ‘atomically sharp’ topological defects separating regions of uniform polarisation in ferroelectric materials.

Domain walls in ferroelectrics possess fascinating properties, and are considered separate entities with properties that are dramatically different from the parent bulk ferroic material.

These properties are brought about by changes in structure, symmetry and chemistry confined within the wall.

“This is the fundamental starting point underpinning domain wall nanoelectronics,” says study author Prof Jan Seidel.

The ‘switching’ property of ferroelectric materials makes them a popular candidate for low-voltage nanoelectronics. In a ferroelectric transistor, distinct polarisation states would represent the computational 0 and 1 states of binary systems.

However, the stability of that stored polarisation information has proven to be a challenge in application of the technology to data storage, especially for very small nanoscale domain sizes, which are desired for high storage densities.

“The polarisation state in ferroelectric materials decays typically within days to a few weeks, which would mean information storage failure in any domain-wall data storage system,” says author Prof Nagy Valanoor.

The period of time that information can be stored in ferroelectric materials, ie the stability of the stored polarisation information, is thus a key performance feature.

To date, this long-standing issue of information instability has been one of the main limitations on the technology’s application.

The study investigates the ferroelectric material BiFeO3 (BFO) with specially introduced designer defects in thin films. These designer defects can clamp down domain walls in the material, effectively preventing the ferroelectric domain relaxation process that drives information loss.

“We used a ‘defect engineering’ method to design and fabricate a special BFO thin film that is not susceptible to retention loss over time,” says lead author Dr Daniel Sando.

VOLTAGE-DEPENDENT DOMAIN FORMATION

Pinning of domain walls is thus the main factor utilised to engineer very long polarisation retention.

“The novelty of this new research lies in precisely-controlled pinning of the domain wall, which allowed us to realise superior polarisation retention,” says lead author Dawei Zhang.

The research provides critical new thinking and concepts for domain-wall based nanoelectronics for non-volatile data storage and logic device architectures.

In addition the mixed phase BFO-LAO system is a fertile ground for other intriguing physical properties, including piezoelectric response, field-induced strain, electrochromic effects, magnetic moments, electrical conductivity and mechanical properties.

###

THE STUDY

The paper ‘Superior polarization retention through engineered domain wall pinning’ was published in Nature Communications today (DOI 10.1038/s41467-019-14250-7).

As well as funding from the Australian Research Council (Discovery, LIEF and Centre of Excellence programs), support was received by the Australian Government Research Training Program Scholarship (co-author Dawei Zhang). Invaluable equipment and technical support was provided by the Monash Centre for Electron Microscopy (MCEM). Thanks also go to Thomas Young and Vicki Zhong (UNSW) for assistance with sample preparation.

FERROELECTRIC MATERIAL STUDIES AT FLEET

Jan Seidel and Nagy Valanoor lead research teams within FLEET, the ARC Centre of Excellence in Future Low-Energy Electronics Technologies.

Jan Seidel’s team perform key scanning probe microscopy (SPM) based research, with a particular focus on the utilisation of complex oxide materials systems. Seidel uses advanced SPM techniques to pattern electrical or magnetic order in topological materials at the nanoscale.

Nagy Valanoor’s team explores oxides and thin-film materials as a platform for new, low-energy topological devices, and synthesises many of the ferroelectric and ferromagnetic heterostructures, and novel topological oxides, used by other FLEET researchers seeking low-energy transistors.

Ferroelectric materials are investigated within FLEET’s Research theme 1, seeking to create a new generation of ultra-low energy electronics.

FLEET is an Australian Research Council-funded research centre bringing together over a hundred Australian and international experts to develop a new generation of ultra-low energy electronics.

Media Contact
Errol Hunt
[email protected]
042-313-9210

Original Source

http://www.fleet.org.au/blog/designer-defect-mediated-clamping-of-ferroelectric-domain-walls-for-more-stable-nanoelectronics/

Related Journal Article

http://dx.doi.org/10.1038/s41467-019-14250-7

Tags: Chemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsElectromagneticsHardwareMaterialsNanotechnology/MicromachinesSuperconductors/Semiconductors
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Key Biophysical Rules for Mini-Protein Endosomal Escape

August 10, 2025
Uranium Complex Converts Dinitrogen to Ammonia Catalytically

Uranium Complex Converts Dinitrogen to Ammonia Catalytically

August 10, 2025

Kombucha’s Pharmaceutical Potential: Production, Patents, Challenges

August 10, 2025

Enhancing Lithium Storage in Zn3Mo2O9 with Carbon Coating

August 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    138 shares
    Share 55 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    77 shares
    Share 31 Tweet 19
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    56 shares
    Share 22 Tweet 14
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Key Biophysical Rules for Mini-Protein Endosomal Escape

Uranium Complex Converts Dinitrogen to Ammonia Catalytically

Kombucha’s Pharmaceutical Potential: Production, Patents, Challenges

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.