• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, January 14, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Defect and interface engineering for e-NRR under ambient conditions

Bioengineer by Bioengineer
September 6, 2025
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The electrochemical nitrogen reduction reaction (e-NRR) under ambient conditions is an emerging strategy to tackle the hydrogen- and energy-intensive processes entailed in industrial ammonia (NH3) synthesis via the traditional Haber-Bosch process. However, the e-NRR performance is currently impeded by the inherent inertness of N2 molecules, extremely slow kinetics, and overwhelming competition from the hydrogen evolution reaction (HER), all of which result in an unsatisfactory yield and ammonia selectivity (Faradaic efficiency, FE). To achieve a high-selectivity and high-performance NRR under ambient conditions, the rational design of efficient electrocatalysts is urgently required. Defect and interface engineering are capable of achieving novel physical and chemical properties as well as superior synergistic effects for various electrocatalysts.

Recently, the Wang Danhong research group of Nankai University reviewed the latest progress of e-NRR catalysts under ambient conditions from the perspective of defect and interface engineering. The authors first provided a general introduction to the NRR mechanism. Subsequently, the authors provided a comprehensive and detailed review on defect and interface engineering for e-NRR electrocatalysts, emphasizing the elucidation of active sites and intrinsic mechanisms. They discussed how the defect (vacancies, heteroatom doping, single-atom, crystal facets, amorphization) engineering and the surface (metal-metal oxide interface, metal-carbon material interface, intermetallic compounds from the viewpoint of alloyed structures, gas-electrolyte-catalyst interface) regulation alter the number of active sites or the electronic structure and then promote the activity of NRR electrocatalysts. In the final section, the authors summarized the present research status and challenges in this emerging field from different aspects and discussed the potential strategies to develop more advanced NRR electrocatalysts. It is expected that this review will be stimulating and assist researchers to create more efficient catalysts for the electrochemical NRR.

###

This work was supported by the National Natural Science Foundation of China (Grant No. 21904071 and 22071115).

The review was published in the Journal of Energy Chemistry. (DOI: 10.1016/j.jechem.2021.06.012)

About the journal

The Journal of Energy Chemistry is a publication that mainly reports on creative researches and innovativeapplications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy,as well as the conversions of biomass and solar energy related with chemical issues to promote academicexchanges in the field of energy chemistry and to accelerate the exploration, research and development of energyscience and technologies.

At Elsevier

https://www.sciencedirect.com/journal/journal-of-energy-chemistry

Manuscript submission

https://www.editorialmanager.com/jechem/default.aspx

Media Contact
Xiaoluan Wei
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.jechem.2021.06.012

Tags: Chemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)Industrial Engineering/ChemistryMaterialsParticle Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Thermal [2+2] Cycloaddition Builds Gem-Difluoro Bicycloalkanes

January 13, 2026
blank

Cobalt-Catalyzed Thioester Coupling via Siloxycarbene

January 12, 2026

Advancing Alkene Chemistry: Homologative Difunctionalization Breakthrough

January 8, 2026

Biocompatible Ligand Enables Safe In-Cell Protein Arylation

January 8, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    147 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    73 shares
    Share 29 Tweet 18
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    52 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Reducing Apneic Time in Critically Ill Children

Genetic Insights into Circadian Adaptation in Endangered Fish

Brain Lesions Impact Postural Control in Spastic CP

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.