• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Decontaminating pesticide-polluted water using engineered nanomaterial and sunlight

Bioengineer by Bioengineer
January 15, 2020
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Two INRS teams join forces and develop a new ecological process to degrade atrazine

IMAGE

Credit: My Ali El Khakani, INRS


Québec, January 15 2020 — Atrazine is one of the most widely used pesticides in North America. Researchers at the Institut National de la Recherche Scientifique (INRS) have developed a new method to degrade it that combines a new nanostructured material and sunlight.

Atrazine is found throughout the environment, even in the drinking water of millions of people across the country. Conventional water treatments are not effective in degrading this pesticide. Newer processes are more effective, but use chemicals that can leave toxic by-products in the environment.

Professor My Ali El Khakani, an expert in nanostructured materials, and Professor Patrick Drogui, a specialist in electrotechnology and water treatment, have joined forces to develop a new ecological degradation process for atrazine that is as chemical-free as possible. “By working synergistically, we were able to develop a water treatment process that we would never have been able to achieve separately. This is one of the great added values of inter disciplinarity in research,” says Professor El Khakani, lead author of the study, whose results are published today in the journal Catalysis Today.

The researchers use an existing process, called photoelectro-catalysis or PEC, which they have optimized for the degradation of atrazine. The process works with two photoelectrodes (light-sensitive electrodes) of opposite charges. Under the effect of light and an electrical potential, it generates free radicals on the surface of the photoelectrodes. Those radicals interact with atrazine molecules and degrade them. “The use of free radicals is advantageous because it does not leave toxic by-products as chlorine would do. They are highly reactive and unstable. As their lifetime is very short they tend to disappear quickly,” explains Professor Drogui, who is a co-author of the study.

The materials’ challenges

To make photoelectrodes (light-sensitive electrodes), Professor El Khakani has chosen titanium oxide (TiO2), a material that is very abundant, chemically stable, and used in many applications including white pigment in paints or sunscreens. Usually, this semiconducting material converts the light energy provided by UV rays into active charges. In order to take advantage of the entire solar spectrum, i.e. visible light in addition to UV, Professor El Khakani had to make the TiO2 films sensitive to visible sunlight. To this end, his team modified titanium oxide on an atomic scale by incorporating nitrogen and tungsten atoms using a plasma process. This doping reduces the photon energy required to trigger PEC in these novel photoelectrodes.

Since the PEC process is genuinely a surface phenomenon, the treatment of a large volume requires a large surface area of the photoelectrodes. For this, Professor El Khakani’s team exploited to the advantages of nanostructuring the surface of photoelectrodes. “Instead of having a flat surface, imagine sculpting it on the nanoscale to create valleys and mountains. This increases the active surface available without changing the physical surface. This is called nanostructuring. Thus, the active surface is artificially increased by several thousand times compared to the physical surface. With 1 g of material, active surface areas between 50 and 100 m2 can be achieved–that’s about the surface of an apartment!”, says Professor El Khakani.

New process efficiency and its limits

Once the photoelectrodes were developed and integrated into a PEC reactor, Professor Drogui’s team optimized the process. His team first used samples of demineralized water to which atrazine was added. PEC with the photoelectrode eliminated about 60 percent of the pesticide after 300 minutes of treatment. Researchers then moved on to real samples of water collected from the Nicolet River (QC, Canada) near areas of intensive corn and soybean agricultures where herbicides are often used.

When using actual water samples, only 8 percent of the atrazine was degraded initially. This low percentage is due to the presence of suspended particles that prevent much of the light from reaching the photoelectrode. In addition, the species present in the solution can attach to the electrode thus reducing its active area. Capitalizing on its expertise in water decontamination, Professor Drogui’s team carried out pretreatments based on coagulation and filtration of certain species before applying the PEC approach again. They then succeeded in degrading 38 to 40 percent of atrazine in the real samples.

The treatment efficiency remains relatively low compared to synthetic water because real water contains bicarbonates and phosphates that trap free radicals and prevent them from reacting with atrazine. “Pre-treatment by chemical coagulation helps remove phosphates, but not bicarbonates. Calcium could be added to precipitate them, but we want to minimize the use of chemicals,” says Professor Drogui.

According to the authors, their new optimized PEC could be used as a tertiary treatment, after removing suspended particles and coagulable species. However, a pre-industrial demonstration stage is required before thinking about large-scale use. Finally, their process has been used to degrade atrazine, but the two teams continue to work together to address other emerging pollutants and antibiotic residues in water.

###

About the study

Photo-electrocatalytic oxidation of atrazine using sputtured deposited TiO2:

WN photoanodes under UV/visible light, by Simon Komtchou, Nazar Delegan, Ahmad Dirany, Patrick Drogui, Didier Robert et My Ali El Khakani, was published in Catalysis Today. This research was supported by funding from the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Fonds de recherche du Québec–Nature et technologies (FRQNT) through their strategic network Plasma-Québec. DOI: https://doi.org/10.1016/j.cattod.2019.04.067

About the INRS

The Institut National de la Recherche Scientifique (INRS) is the only institution in Québec dedicated exclusively to graduate level university research and training. The impacts of its faculty and students are felt around the world. INRS proudly contributes to societal progress in partnership with industry and community stakeholders, both through its discoveries and by training new researchers and technicians to deliver scientific, social, and technological breakthroughs in the future.

For further information:

Audrey-Maude Vézina,

Communications, INRS,

418 687-6403 (office),

418-254-2156 (cell),

[email protected]

Media Contact
Julie Robert, Press Information Officer, INRS
[email protected]
514-971-4747

Original Source

http://www.inrs.ca/english/actualites/decontaminating-pesticide-polluted-water-using-engineered-nanomaterial

Related Journal Article

http://dx.doi.org/10.1016/j.cattod.2019.04.067

Tags: AgricultureBiochemistryBiomechanics/BiophysicsChemistry/Physics/Materials SciencesFertilizers/Pest ManagementIndustrial Engineering/ChemistryMaterialsNanotechnology/MicromachinesSuperconductors/Semiconductors
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

WSU Researchers Uncover Biological Mechanism Behind Coho Salmon Die-Offs

August 14, 2025
Fluorenol Photobases Enable Ambient CO2 Capture

Fluorenol Photobases Enable Ambient CO2 Capture

August 14, 2025

Accelerating Detection of Shadows in Fusion Systems Using AI

August 14, 2025

Introducing 3D-SLISE: A Quasi-Solid Electrolyte Paving the Way for Safer and Greener Lithium-Ion Batteries

August 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Quality of Canned Whelk Under Varying Sterilization

Harnessing Inner Potential: The Role of Lithium Battery Recycling in Sustainable Innovation

Breakthrough Therapy Eradicates Bladder Cancer in 82% of Patients

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.