• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Immunology

Dartmouth-led team engineers new treatment for drug-resistant bacterial infections

Bioengineer by Bioengineer
September 2, 2020
in Immunology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Dartmouth Engineering

The Centers for Disease Control and Prevention (CDC) has prioritized finding effective treatment of Methicillin-resistant Staphylococcus aureus (MRSA), one of the most common bacterial pathogens and the single most deadly drug-resistant bacteria in the United States. Now, a new study led by Dartmouth Engineering faculty shows promise for an engineered lysin-based antibacterial agent that may enable safe, repeated dosing to treat life-threatening infections by MRSA and other types of S. aureus.

In recent years, lysins–enzymes naturally produced by microbes and associated viruses–have shown potential to treat S. aureus, which can rapidly acquire resistance to other types of antibiotic drugs.

“Lysins are one of the most promising next-generation antibiotics. They kill drug-sensitive and drug-resistant bacteria with equal efficacy, they can potentially suppress new resistance phenotypes, and they also have this laser-like precision,” said Karl Griswold, corresponding author and associate professor of engineering at Dartmouth.

While there is promise in lysins, development has been slowed due to concerns that they prompt humans’ immune systems to develop antidrug antibodies, which can have negative side effects including life-threatening hypersensitivity reactions.

That’s why the Dartmouth Engineering team–which also included researchers in Dartmouth’s computer science department, The Lundquist Institute at Harbor-UCLA Medical Center, Lyticon, and Stealth Biologics–engineered and patented F12, a new lysin-based antibacterial agent. F12 is essentially able to hide from the human immune system (due to T cell epitope deletion), and therefore does not cause the same negative side effects as unmodified, natural lysins.

F12 is the first lysin-based treatment with the potential to be used multiple times on a single patient, making it ideal to treat particularly persistent drug-resistant and drug-sensitive infections. Preclinical studies showed the efficacy of F12 does not diminish with repeated doses, while two other anti-MRSA lysin treatments currently in clinical trials are only designed to be used a single time.

“We have engineered this super potent, super effective anti-MRSA biotherapeutic, and we’ve done it in a way that renders it compatible with and largely invisible to the human immune system. By making it a safer drug, we’ve enabled the possibility of dosing multiple times in order to treat even the most highly refractory infections,” said Griswold.

The team’s paper, “Globally deimmunized lysostaphin evades human immune surveillance and enables highly efficacious repeat dosing,” was published earlier today by Science Advances. The work was the result of two grants from the National Institutes of Health (NIH) totaling $1.7 million.

The paper details the treatment’s positive results in rabbits, mice with partially-humanized immune systems, and studies with extracted human immune cells. Griswold believes the antibacterial agent could be ready for human clinical trials as soon as 2023.

“This is the first report of a translation-ready deimmunized lysin, and F12 has serious, bonafide clinical potential,” said Griswold.

Further studies of F12 will examine synergy with standard-of-care antibacterial chemotherapies; preliminary results suggest the combinations are extremely potent and suppress drug-resistance phenotypes.

###

Media Contact
Julie Bonette
[email protected]

Original Source

https://engineering.dartmouth.edu/news/dartmouth-led-team-engineers-new-treatment-for-drug-resistant-bacterial-infections

Related Journal Article

http://dx.doi.org/10.1126/sciadv.abb9011

Tags: BacteriologyBiologyCell BiologyInfectious/Emerging DiseasesMedicine/HealthMicrobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

UMass Amherst grad student awarded fellowship for food allergy research

July 23, 2021
IMAGE

Less-sensitive COVID-19 tests may still achieve optimal results if enough people tested

July 22, 2021

Public trust in CDC, FDA, and Fauci holds steady, survey shows

July 20, 2021

USC study shows male-female differences in immune cell function

July 19, 2021
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1078 shares
    Share 431 Tweet 269
  • New Study Reveals the Science Behind Exercise and Weight Loss

    100 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    95 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    79 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Leuprolide’s Impact on Central Precocious Puberty in Children

Achieving Unprecedented Precision in Regular GPS Technology

Defective DNA Repair Linked to Nectin-4 in UTUC

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.