• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, June 27, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Danish student solves how the Universe is reflected near black holes

Bioengineer by Bioengineer
July 12, 2021
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: credit: interstellar.wiki/CC BY-NC License.

In the vicinity of black holes, space is so warped that even light rays may curve around them several times. This phenomenon may enable us to see multiple versions of the same thing. While this has been known for decades, only now do we have an exact, mathematical expression, thanks to Albert Sneppen, student at the Niels Bohr Institute. The result, which even is more useful in realistic black holes, has just been published in the journal Scientific Reports.

You have probably heard of black holes — the marvelous lumps of gravity from which not even light can escape. You may also have heard that space itself and even time behave oddly near black holes; space is warped.

In the vicinity of a black hole, space curves so much that light rays are deflected, and very nearby light can be deflected so much that it travels several times around the black hole. Hence, when we observe a distant background galaxy (or some other celestial body), we may be lucky to see the same image of the galaxy multiple times, albeit more and more distorted.

Galaxies in multiple versions

The mechanism is shown on the figure below: A distant galaxy shines in all directions — some of its light comes close to the black hole and is lightly deflected; some light comes even closer and circumvolves the hole a single time before escaping down to us, and so on. Looking near the black hole, we see more and more versions of the same galaxy, the closer to the edge of the hole we are looking.

How much closer to the black hole do you have to look from one image to see the next image? The result has been known for over 40 years, and is some 500 times (for the math aficionados, it is more accurately the “exponential function of two pi”, written e2π).

Calculating this is so complicated that, until recently, we had not yet developed a mathematical and physical intuition as to why it happens to be this exact factor. But using some clever, mathematical tricks, master’s student Albert Sneppen from the Cosmic Dawn Center — a basic research center under both the Niels Bohr Institute and DTU Space — has now succeeded in proving why.

“There is something fantastically beautiful in now understanding why the images repeat themselves in such an elegant way. On top of that, it provides new opportunities to test our understanding of gravity and black holes,” Albert Sneppen clarifies.

Proving something mathematically is not only satisfying in itself; indeed, it brings us closer to an understanding of this marvelous phenomenon. The factor “500” follows directly from how black holes and gravity work, so the repetitions of the images now become a way to examine and test gravity.

Spinning black holes

As a completely new feature, Sneppen’s method can also be generalized to apply not only to “trivial” black holes, but also to black holes that rotate. Which, in fact, they all do.

“It turns out that when the it rotates really fast, you no longer have to get closer to the black hole by a factor 500, but significantly less. In fact, each image is now only 50, or 5, or even down to just 2 times closer to the edge of the black hole”, explains Albert Sneppen.

Having to look 500 times closer to the black hole for each new image, means that the images are quickly “squeezed” into one annular image, as seen in the figure on the right. In practice, the many images will be difficult to observe. But when black holes rotate, there is more room for the “extra” images, so we can hope to confirm the theory observationally in a not-too-distant future. In this way, we can learn about not just black holes, but also the galaxies behind them:

The travel time of the light increases, the more times it has to go around the black hole, so the images become increasingly “delayed”. If, for example, a star explodes as a supernova in a background galaxy, one would be able to see this explosion again and again.

###

Media Contact
Albert Sneppen
[email protected]

Original Source

https://nbi.ku.dk/english/news/news21/danish-student-solves-how-the-universe-is-reflected-near-black-holes/

Related Journal Article

http://dx.doi.org/10.1038/s41598-021-93595-w

Tags: AstronomyAstrophysicsCalculations/Problem-SolvingMathematics/StatisticsSpace/Planetary Science
Share13Tweet8Share2ShareShareShare2

Related Posts

“Whisker” of crystal growing out from a crystalline front.

Scientists unravel mysterious mechanism behind “whisker crystal” growth

June 25, 2022
Defibrillation Teleportation

Spiral wave teleportation theory offers new path to defibrillate hearts, terminate arrhythmias

June 24, 2022

University of Houston research allows for 3D printing of ‘organic electronics’

June 24, 2022

Changed gene expression after heart surgery extends cardiomyocyte regeneration

June 24, 2022
Please login to join discussion

POPULAR NEWS

  • Pacific whiting

    Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    37 shares
    Share 15 Tweet 9
  • University of Miami Rosenstiel School selected for National ‘Reefense’ Initiative focusing on Florida and the Caribbean

    35 shares
    Share 14 Tweet 9
  • Saving the Mekong delta from drowning

    37 shares
    Share 15 Tweet 9
  • Sharks may be closer to the city than you think, new study finds

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VehiclesViolence/CriminalsUrbanizationUniversity of WashingtonWeather/StormsVaccinesVirologyUrogenital SystemZoology/Veterinary ScienceVaccineVirusWeaponry

Recent Posts

  • USDA-ARS releases genome of the voracious desert locust
  • Repairing nature with DNA technology
  • The Sussex researchers who used international collaboration and 3D printing to stem PPE shortages in Nigeria
  • Predicting the future: A quick, easy scan can reveal late-life dementia risk
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....