• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Damaged lungs regenerated in study

Bioengineer by Bioengineer
May 7, 2019
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Research offers promise for lung transplant patients

A new technique to rehabilitate lungs that are too damaged to be considered for transplant could benefit an increasing population of patients with end-stage lung disease.

About 80 percent of the already limited supply of donor lungs are too damaged to be considered for transplantation, according to senior author Matthew Bacchetta, MD, MBA, MA, associate professor of Thoracic and Cardiac Surgery at Vanderbilt University Medical Center.

Bacchetta and colleagues from Columbia University published a study today in Nature Communications that demonstrates a cross-circulation technique can maintain lungs for 36 hours, giving doctors time to rehabilitate the lungs and test new interventions.

The regenerated lungs also met criteria for transplantation, which isn’t possible with current methods that provide doctors about six hours to assess the lungs and not enough time to rehabilitate them.

“Our work has established a new benchmark in organ recovery,” Bacchetta said. “It has opened up new pathways for translational applications and basic science exploration. We have literally spent years refining this technology to improve the recovery and regeneration of organs.”

The new method could also be studied for other damaged organs such as hearts, kidneys and livers, he added.

Bacchetta’s study focused on lungs injured by gastric aspiration, or the introduction of material from the stomach to the lungs, because many lungs rejected for transplant have gastric aspiration or a similar type of caustic injury.

His study method to regenerate lungs in animal models resulted in significantly improved lung function, cellular regeneration, and time to develop diagnostic tools for non-invasive organ evaluation and repair.

As doctors refine the new technique, Bacchetta foresees expanding the 36-hour window to work on organs to days or even weeks, allowing more time to not only rehabilitate organs but also explore new techniques of repairing them.

“We were driven not just by the clinical need but also by a basic science need of being able to create a system that provides durable physiologic support for the organ to regenerate,” Bacchetta said.

Further study will be required to determine how well the rehabilitated lungs function, safety of the method, and how the lungs respond to immunosuppressive drugs given after transplantation.

“Dr. Bacchetta and his colleagues achieved a critical advance that could increase the number of organs available for transplant and realize the goal that no patient dies waiting for an organ,” said Seth Karp, MD, H. William Scott Jr. Professor and chair of the Section of Surgical Sciences.

###

The study was supported by grants from the National Institutes of Health (R01 HL120046, U01 HL134760, P41 EB002520), the Rick Bartlett Foundation and the Mikati Foundation.

Media Contact
Craig Boerner
[email protected]

Tags: Medicine/HealthTransplantation
Share13Tweet8Share2ShareShareShare2

Related Posts

MALAT1 Knockdown Reduces High Glucose Neuronal Apoptosis

MALAT1 Knockdown Reduces High Glucose Neuronal Apoptosis

August 25, 2025
Evaluating My Dose Coachâ„¢ for Insulin Management in Diabetes

Evaluating My Dose Coach™ for Insulin Management in Diabetes

August 25, 2025

HIV-Linked Cervicovaginal Microbiome Changes in Peruvian Women

August 25, 2025

Urtica dioica Boosts Cisplatin-Induced Apoptosis in Ovarian Cancer

August 25, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    139 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

MALAT1 Knockdown Reduces High Glucose Neuronal Apoptosis

Evaluating My Dose Coach™ for Insulin Management in Diabetes

HIV-Linked Cervicovaginal Microbiome Changes in Peruvian Women

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.