• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Counting photons is now routine enough to need standards

Bioengineer by Bioengineer
December 20, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: J. Burrus/NIST


Since the National Institute of Standards and Technology (NIST) built its first superconducting devices for counting photons (the smallest units of light) in the 1990s, these once-rare detectors have become popular research tools all over the world. Now, NIST has taken a step toward enabling universal standards for these devices, which are becoming increasingly important in science and industry.

Single-photon detectors (SPDs) are now key to research areas ranging from optical communications and astrophysics to cutting-edge information technologies based on quantum physics, such as quantum cryptography and quantum teleportation.

To ensure their accuracy and reliability, SPDs need to be evaluated and compared to some benchmark, ideally a formal standard. NIST researchers are developing methods to do that and have already started to perform custom calibrations for the handful of companies that make SPDs.

The NIST team has just published methods for measuring the efficiency of five SPDs, including one made at NIST, as a prelude to offering an official calibration service.

“This is a first step towards implementation of a quantum standard — we produced a tool to verify a future single-photon detection standard,” NIST physicist Thomas Gerrits said. “There is no standard right now, but many national metrology institutes, including NIST, are working on this.”

“There have been journal papers on this topic before, but we did in-depth uncertainty analyses and described in great detail how we did the tests,” Gerrits said. “The aim is to serve as a reference for our planned calibration service.”

NIST is uniquely qualified to develop these evaluation methods because the institute makes the most efficient SPDs in the world and is constantly improving their performance. NIST specializes in two superconducting designs — one based on nanowires or nanostrips, evaluated in the new study, and transition-edge sensors, to be studied in the near future. Future work may also address standards for detectors that measure very low light levels but can’t count the number of photons.

In the modern metric system, known as the SI, the basic unit of measurement that’s most closely related to photon detection is the candela, which is relevant to light detected by the human eye. Future SI redefinitions might include photon-counting standards, which could offer a more accurate way of measuring light in terms of the candela. Single-photon light levels are less than one-billionth of the amounts in current standards.

The new paper details NIST’s use of conventional technologies to measure SPD detection efficiency, defined as the probability of detecting a photon hitting the detector and producing a measurable outcome. The NIST team ensured the measurements are traceable to a primary standard for optical power meters (NIST’s Laser Optimized Cryogenic Radiometer). The meters maintain accuracy as measurements are scaled down to low light levels, with the overall measurement uncertainty mostly due to the power meter calibration.

The researchers measured the efficiencies of five detectors, including three silicon photon-counting photodiodes and NIST’s nanowire detector. Photons were sent by optical fiber for some measurements and through the air in other cases. Measurements were made for two different wavelengths of light commonly used in fiber optics and communications. Uncertainties ranged from a low of 0.70% for measurements in fiber at a wavelength of 1533.6 nanometers (nm) to 1.78% for over-the-air readings at 851.7 nm.

###

Media Contact
Ben P. Stein
[email protected]
301-975-2763

Original Source

https://www.nist.gov/news-events/news/2019/12/counting-photons-now-routine-enough-need-standards

Related Journal Article

http://dx.doi.org/10.1088/1681-7575/ab4533

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

Bright Red-NIR Glow from Carbodicarbene Borenium Ions

Bright Red-NIR Glow from Carbodicarbene Borenium Ions

October 6, 2025
blank

Transforming Biogas Waste into an Effective Solution for Ammonium Pollution Cleanup

October 6, 2025

Scientists Incorporate Waveguide Physics into Metasurfaces to Unlock Advanced Light Manipulation

October 6, 2025

Scientists Develop “Knob” to Control Topological Spin Textures in Materials

October 6, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    95 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    93 shares
    Share 37 Tweet 23
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    73 shares
    Share 29 Tweet 18
  • New Insights Suggest ALS May Be an Autoimmune Disease

    72 shares
    Share 29 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

LVSG Effects on LES and GERD: Meta-Analysis

PRDM6: A Key Protector Against PCOS

Bright Red-NIR Glow from Carbodicarbene Borenium Ions

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.