• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, July 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Could gulls' wings inspire smarter airplane design?

Bioengineer by Bioengineer
January 3, 2019
in Biology
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Flexing a single elbow joint enables gulls to adapt their wing shape to gusty conditions–a relatively simple mechanism that could inspire improved aircraft design

IMAGE

Credit: Christina Harvey, University of British Columbia, University of Michigan


Flexing a single elbow joint enables gulls to adapt their wing shape to gusty conditions, according to new University of British Columbia (UBC) research–a relatively simple mechanism that could inspire improved aircraft design.

“While we know birds frequently alter their wing shape, this is the first empirical evidence demonstrating how that wing morphing affects avian stability,” says UBC zoologist Douglas Altshuler, senior author on the paper published this week in the Journal of the Royal Society Interface.

“And in this case, the gull’s wing design points to a novel, and fairly simple, avian-inspired joint that may enable aircraft to adjust dynamically to challenging conditions.”

As wing speeds and maximum gusts increase, gulls sacrifice stability for maneuverability. By altering the angle of their elbow joint they shift from extended wing configurations to a flexed configuration, pulling the tips of their wings in and back. The flexed shape gives them more control.

To determine the stability of different wing shapes, Altshuler and researcher Christina Harvey prepared gull wings over the anatomical elbow range and measured their performance in a wind tunnel. They also observed gulls in the wild.

“The Wright brothers weren’t the first to design an aircraft that was able to fly, but they were the first to successfully control and stabilize a powered aircraft inflight,” says Harvey, now with the University of Michigan.

“Likewise, it’s not enough for birds to simply produce sufficient lift and thrust. They must also control and stabilize their flight paths to be able to successfully forage and migrate in their natural habitat.”

To get a fuller picture of how birds maintain their stability while gliding the researchers want to study a wider range of wind perturbations — gulls often encounter unsteady, large-scale turbulence while flying in the wake of buildings or convective air flows over open water. Atmospheric turbulence in these conditions is likely larger than the wind tunnel turbulence the researchers used in the study.

###

Media Contact
Chris Balma
[email protected]
604-202-5047

Original Source

https://science.ubc.ca/node/17551

Related Journal Article

http://dx.doi.org/10.1098/rsif.2018.0641

Tags: BiologyPlant SciencesPopulation BiologyResearch/DevelopmentZoology/Veterinary Science
Share15Tweet8Share2ShareShareShare2

Related Posts

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

July 20, 2025
blank

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

July 17, 2025

Mobile Gene Regulator Balances Arabidopsis Shoot-Root Growth

July 16, 2025

Mobile Transcription Factor Drives Nitrogen Deficiency Response

July 16, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    59 shares
    Share 24 Tweet 15
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14
  • IIT Researchers Unveil Flying Humanoid Robot: A Breakthrough in Robotics

    53 shares
    Share 21 Tweet 13
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.