• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Could gulls' wings inspire smarter airplane design?

Bioengineer by Bioengineer
January 3, 2019
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Flexing a single elbow joint enables gulls to adapt their wing shape to gusty conditions–a relatively simple mechanism that could inspire improved aircraft design

IMAGE

Credit: Christina Harvey, University of British Columbia, University of Michigan


Flexing a single elbow joint enables gulls to adapt their wing shape to gusty conditions, according to new University of British Columbia (UBC) research–a relatively simple mechanism that could inspire improved aircraft design.

“While we know birds frequently alter their wing shape, this is the first empirical evidence demonstrating how that wing morphing affects avian stability,” says UBC zoologist Douglas Altshuler, senior author on the paper published this week in the Journal of the Royal Society Interface.

“And in this case, the gull’s wing design points to a novel, and fairly simple, avian-inspired joint that may enable aircraft to adjust dynamically to challenging conditions.”

As wing speeds and maximum gusts increase, gulls sacrifice stability for maneuverability. By altering the angle of their elbow joint they shift from extended wing configurations to a flexed configuration, pulling the tips of their wings in and back. The flexed shape gives them more control.

To determine the stability of different wing shapes, Altshuler and researcher Christina Harvey prepared gull wings over the anatomical elbow range and measured their performance in a wind tunnel. They also observed gulls in the wild.

“The Wright brothers weren’t the first to design an aircraft that was able to fly, but they were the first to successfully control and stabilize a powered aircraft inflight,” says Harvey, now with the University of Michigan.

“Likewise, it’s not enough for birds to simply produce sufficient lift and thrust. They must also control and stabilize their flight paths to be able to successfully forage and migrate in their natural habitat.”

To get a fuller picture of how birds maintain their stability while gliding the researchers want to study a wider range of wind perturbations — gulls often encounter unsteady, large-scale turbulence while flying in the wake of buildings or convective air flows over open water. Atmospheric turbulence in these conditions is likely larger than the wind tunnel turbulence the researchers used in the study.

###

Media Contact
Chris Balma
[email protected]
604-202-5047

Original Source

https://science.ubc.ca/node/17551

Related Journal Article

http://dx.doi.org/10.1098/rsif.2018.0641

Tags: BiologyPlant SciencesPopulation BiologyResearch/DevelopmentZoology/Veterinary Science
Share15Tweet8Share2ShareShareShare2

Related Posts

Boosting Buccal Swab PCR: BSA Tackles Inhibition

Boosting Buccal Swab PCR: BSA Tackles Inhibition

November 22, 2025
blank

New Bacterial Endophyte Yields Powerful Biosurfactant

November 22, 2025

Pseudogenes and Retroviral ORFs: New Functions Revealed

November 21, 2025

Distinguishing Lipopeptide Gene Evolution in Bacillus

November 21, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    202 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    92 shares
    Share 37 Tweet 23
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    211 shares
    Share 84 Tweet 53

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Hope, Well-Being Shape Elderly Cancer Patients’ Quality

Mouse Serum Promotes Follicular Cavity Expansion Across Estrous Cycles

Body Fat and Brain: Interconnected Health Dynamics

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.