• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Corals tell Arabian Sea story of global warming

Bioengineer by Bioengineer
June 4, 2021
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Tsuyoshi Watanabe

Coral insights into 1,000 years of seasonal changes in the Arabian Sea warn of significant impacts caused by global warming.

Every year, the southwesterly winds of the summer monsoon sweep down the Arabian Peninsula, pushing the surface waters of the Arabian Sea away from the coast and driving an upwelling of deep waters to the surface. This rising seawater is colder and less saline than the surface water and is rich in nutrients, providing energy for the various organisms living in the Arabian Sea and Indian Ocean.

Scientists from Japan, Taiwan and Germany, including coral reef scientist Dr. Tsuyoshi Watanabe of Hokkaido University, have uncovered evidence from corals off the coast of Oman suggesting that global warming is causing changes to the Arabian Sea that could impact the climate, ecosystems and socioeconomics of the densely populated areas surrounding the Indian Ocean. The findings were published in the journal Geophysical Research Letters.

Stronger summer monsoon winds lead to a stronger upwelling in the Arabian Sea. Stronger winds form when the air over the Indian subcontinent warms more rapidly than the air over the Indian Ocean. Recently, however, the opposite has been happening. Scientists wanted to know how this change affects the Arabian Sea upwelling, but the phenomenon has not been monitored continuously, so available measurements aren’t enough to tell the whole story.

Watanabe and his colleagues analysed fossil and modern corals off an Omani island in the Arabian Sea. They identified the ages of the corals they collected and established a correlation between coral data and seawater temperature changes over a very fine timescale, and used that information to extrapolate salinity changes. The four fossil corals they used dated to approximately 1167 CE, 1624 CE, 1703 CE and 1968 CE, respectively. They took samples from the corals at different depths towards their cores, and then analysed the ratio of strontium to calcium in the samples, as well as the amounts of oxygen and carbon isotopes. The growth rate of the corals is steady over centuries, and the skeletons contain a record of the changes in elements. Generally, as water temperatures rise, the strontium-to-calcium ratio and isotope oxygen-18 in coral decrease.

The results showed that the summer Arabian Sea upwelling was relatively stable through the warmer period of the medieval climate anomaly in the 12th century; the cooler little ice age, which extended between the 14th and 19th centuries AD; and up until the mid-20th century. After this period, however, the scientists observed a clear weakening of the Arabian Sea upwelling. They reason this can most likely be explained by faster warming of the northern Indian Ocean, caused by greenhouse gases, and slowed warming of the Indian subcontinent, caused by the absorption of sunrays by aerosol emissions over South Asia. This then weakens the summer monsoon winds, impacting the strength of the Arabian Sea upwelling.

“The seasonal upwelling is vital for commercial fishing and has significant impacts on the regional climate, ecosystems and socioeconomics,” says Tsuyoshi Watanabe. “Our findings imply that weakening of the Arabian Sea upwelling is likely to continue along with global warming, impacting monsoon rainfalls, sea levels, fisheries and even agricultural production.”

###

Media Contact
Sohail Keegan Pinto
[email protected]

Original Source

https://www.global.hokudai.ac.jp/blog/corals-tell-arabian-sea-story-of-global-warming/

Related Journal Article

http://dx.doi.org/10.1029/2021GL092432

Tags: Atmospheric ScienceClimate ChangeClimate ScienceHydrology/Water ResourcesPaleontologyTemperature-Dependent Phenomena
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Soybean Phytocytokine-Receptor Module Boosts Disease Resistance

August 20, 2025
Breakthrough Study Reveals New Methods to Protect Nerve Cells from ALS

Breakthrough Study Reveals New Methods to Protect Nerve Cells from ALS

August 19, 2025

Does Your Brain React to What You Do or How You Do It?

August 19, 2025

Aramchol Enhances Regorafenib Efficacy in Treating Gastrointestinal Tumors

August 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

NLRP3 Inflammasome Roles in PANoptosis, Disease

SiO2 Nanoparticles Enhance Conductivity in Polymer Blends

Soybean Phytocytokine-Receptor Module Boosts Disease Resistance

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.