• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Corals’ natural ‘sunscreen’ may help them weather climate change

Bioengineer by Bioengineer
June 9, 2021
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Mike Henley/Smithsonian

Smithsonian Conservation Biology Institute scientists are one step closer to understanding why some corals can weather climate change better than others, and the secret could be in a specific protein that produces a natural sunscreen. As their name implies, Hawaiian blue rice corals sport a deep blue pigment, which is created by chromoprotein and filters out harmful ultraviolet (UV) radiation from the sun. Although UV damage may produce long-term impacts to reproduction in many coral species–including brown rice coral–it may not have the same effect on blue rice coral. The findings of this study were published June 9 in the paper “Reproductive plasticity of Hawaiian Montipora corals following thermal stress” in Scientific Reports.

“Having witnessed firsthand the devastating effects bleaching had on brown rice coral in 2014 and 2015, it is encouraging to see blue rice coral either recovered quickly after bleaching or was not affected by elevated ocean temperatures at all,” said Mike Henley, Smithsonian Conservation Biology Institute scientist and the paper’s lead author. “By studying blue rice corals’ reproductive successes, we can better understand how other corals weather climate change and ocean warming.”

A coral’s color is derived from a microscopic protozoa called zooxanthellae. This algae lives inside the coral tissue and serves as the main food source for shallow, reef-building corals, including brown rice coral and blue rice coral. They have a symbiotic relationship; the coral protects the zooxanthellae, and in turn zooxanthellae provide the coral with food. These algae also produce sunscreen for the coral. Corals are animals and cannot photosynthesize, but zooxanthellae can. The waste product of their photosynthesis are sugars that feed the coral.

When ocean temperatures warm, however, corals become stressed, and there is a breakdown in the symbiosis. Warm temperatures speed up the zooxanthellae’s metabolism, causing it to produce a toxic compound. In response, the corals expel the algae and their sunscreen, leaving them open to harmful UV damage. Since these species get most of their coloring from the zooxanthellae, the expulsion causes the corals to “bleach,” or appear lighter in appearance–changing from dark hue to a paler hue.

Bleaching affects some corals’ ability to reproduce successfully. Upon expelling their zooxanthellae and, therefore, losing their UV protection, corals’ DNA is at greater risk of being damaged. Specifically, changes in their sperm cells’ mitochondria can affect their motility (ability to swim) for the long-term. If unable to successfully reproduce, corals cannot create novel offspring that may have genetic modifications that make them more resistant to warming and help them adapt to changing oceans.

Following the 2014 and 2015 bleaching events in Hawaii, the team observed that blue rice coral had exceptional reproductive vigor at 90% motility. Its brown-pigmented counterparts’ motility, on the other hand, was only half this amount. This suggests that even if brown corals survive bleaching and look visually healthy, the damage caused by bleaching and UV exposure could have long-lasting impacts on their ability to successfully reproduce. A key factor in the blue rice coral’s ability to reproduce successfully might be its sunscreen pigment, which the coral may retain even if it bleaches. By better understanding the role UV-protective pigments play in mitigating the adverse effects of climate change and warming oceans, scientists can piece together the picture of why some species are better equipped to survive and thrive in a changing environment than others.

###

The Smithsonian’s National Zoo and Conservation Biology Institute leads the Smithsonian’s global effort to save species, better understand ecosystems and train future generations of conservationists. As Washington, D.C.’s favorite destination for families, the Zoo connects visitors to amazing animals and the people working to save them. In Front Royal, Virginia, across the United States and in more than 30 countries worldwide, Smithsonian Conservation Biology Institute scientists and animal care experts tackle some of today’s most complex conservation challenges by applying and sharing what they learn about animal behavior and reproduction, ecology, genetics, migration and conservation sustainability to save wildlife and habitats.

Media Contact
Annalisa Meyer
[email protected]

Original Source

https://nationalzoo.si.edu/news/smithsonian-conservation-biology-institute-scientists-find-corals-natural-sunscreen-may-help

Related Journal Article

http://dx.doi.org/10.1038/s41598-021-91030-8

Tags: BiodiversityBiologyClimate ChangeEcology/EnvironmentOceanography
Share12Tweet8Share2ShareShareShare2

Related Posts

Link Between Halquinol and Antibiotic Resistance Explored

Link Between Halquinol and Antibiotic Resistance Explored

August 22, 2025
Perilla frutescens acuta Stops Allergy by Blocking Key Pathways

Perilla frutescens acuta Stops Allergy by Blocking Key Pathways

August 22, 2025

Tracking the Language of Molecules

August 22, 2025

Blocking Programmed Cell Death: A New Approach to Treating Rare Childhood Diseases

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nutrition Education Prevents Malnutrition in Radiotherapy

Scientists Unveil Breakthrough Technique for Large-Scale Metabolite Analysis in Biological Samples

Metabolic Profiling Reveals RCC Drug Response

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.