• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Coral decline — is sunscreen a scapegoat?

Bioengineer by Bioengineer
February 2, 2021
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Louise Carroll

Many household products contain ingredients to protect them against sun damage. These UV filters are found in plastics, paints and textiles, as well as personal care products such as sunscreens and moisturizers. UV filters are entering the aquatic environment in rivers, lakes and oceans. Consider for a moment a beach goer swimming in the ocean or rain washing over plastic playground equipment and running into a stormwater drain – either directly or indirectly, UV filters end up making their way to a waterway.

UV filters are chemicals that work by either physically blocking or absorbing UV rays. There are two main types of UV filters: inorganic forms, which contain metal particles, such as titanium dioxide (TiO2) or zinc oxide (ZnO) and physically block sunrays like little mirrors; and organic chemical UV filters, such as benzophenone-3 (BP-3 or oxybenzone) and octinoxate (EHMC), which chemically absorb UV rays.

In recent years, there has been a rapid increase in public, political and scientific interest in the effect UV filters have had on coral reefs; especially organic UV filters used in sun protection products. Coral reefs are important for biodiversity and provide great economic values, such as tourism and recreation. Significant decline in the diversity and abundance of coral in recent years has been attributed to climate change and longer-duration temperature events, which are exacerbated by human activities that cause coral bleaching, like overfishing and land run-off of nutrients and chemical pollutants. The impact of organic UV filters on corals has also been scrutinized and some regulatory bodies have even banned the sale of sunscreens containing certain organic UV filters.

A recent paper in the journal of Environmental Toxicology and Chemistry (ET&C) summarizes the scientific literature assessing the impact of organic UV filters on coral ecosystems. The researchers reviewed nine laboratory coral exposure studies investigating the biological effects of organic UV filters and 12 studies that provided information on the concentration of 14 different organic UV filters in seawater near coral reefs. They concluded that while organic UV filters do occur in the environment, there is limited evidence to suggest their presence is causing significant harm to coral reefs. However, the scientists caution that based on the limited information and data currently available, it would be premature to conclude that organic UV filters do not adversely impact coral reefs. The scientists pointed to the wide variations in experimental designs used and issues of data reliability, which makes it difficult to draw conclusions. They also pointed to numerous critical data gaps in terms of reliable and relevant environmental exposure and toxicity data that need to be filled before conclusions can be drawn. In their paper, Carys Mitchelmore and colleagues outline a number of recommendations for future studies to assess the environmental risk of organic UV filters to coral reef ecosystems. Mitchelmore adds, “In addition to more field and lab studies that take reef conditions and species into account, there is a need to develop a coral environment risk assessment framework. Investigating and prioritizing stressors on corals would allow regulators, policymakers and scientists to optimize conservation and management activities.”

###

Media Contact
Jen Lynch
[email protected]

Related Journal Article

http://dx.doi.org/10.1002/etc.4948

Tags: BiodiversityBiologyClimate ChangeEcology/EnvironmentMarine/Freshwater BiologyPollution/RemediationToxicology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Co-cultivating Pseudomonas and Bacillus for Enhanced Biocontrol

August 7, 2025
Rewrite Behavioral, Psychological, and Physical Predictors of Adolescent Drug Use in South Korea: Insights Obtained Using Machine Learning as a headline for a science magazine post, using no more than 8 words

Rewrite Behavioral, Psychological, and Physical Predictors of Adolescent Drug Use in South Korea: Insights Obtained Using Machine Learning as a headline for a science magazine post, using no more than 8 words

August 7, 2025

Rewrite Active ingredients, nutrition values and health-promoting effects of aboveground parts of rhubarb: a review as a headline for a science magazine post, using no more than 8 words

August 7, 2025

Global Adolescent Smoking Cessation: Prevalence and Factors

August 7, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    75 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    42 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Co-cultivating Pseudomonas and Bacillus for Enhanced Biocontrol

Rewrite Behavioral, Psychological, and Physical Predictors of Adolescent Drug Use in South Korea: Insights Obtained Using Machine Learning as a headline for a science magazine post, using no more than 8 words

Rewrite Active ingredients, nutrition values and health-promoting effects of aboveground parts of rhubarb: a review as a headline for a science magazine post, using no more than 8 words

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.