• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, February 27, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Copolymer helps remove pervasive PFAS toxins from environment

Bioengineer by Bioengineer
October 29, 2020
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Photo by L. Brian Stauffer

CHAMPAIGN, Ill. — Researchers have demonstrated that they can attract, capture and destroy PFAS – a group of federally regulated substances found in everything from nonstick coatings to shampoo and nicknamed “the forever chemicals” due to their persistence in the natural environment.

Using a tunable copolymer electrode, engineers from the University of Illinois at Urbana-Champaign captured and destroyed perfluoroalkyl and polyfluoroalkyl substances present in water using electrochemical reactions. The proof-of-concept study is the first to show that copolymers can drive electrochemical environmental applications, the researchers said.

The results of the study are published in the journal Advanced Functional Materials.

“Exposure to PFAS has gained intense attention recently due to their widespread occurrence in natural bodies of water, contaminated soil and drinking water,” said Xiao Su, a professor of chemical and biomolecular engineering who led the study in collaboration with civil and environmental engineering professors Yujie Men and Roland Cusick.

PFAS are typically present in low concentrations, and devices or methods designed to remove them must be highly selective toward them over other compounds found in natural waters, the researchers said. PFAS are electrically charged, held together by highly stable bonds, and are water-resistant, making them difficult to destroy using traditional waste-disposal methods.

“We have found a way to tune a copolymer electrode to attract and adsorb – or capture – PFAS from water,” Su said. “The process not only removes these dangerous contaminants, but also destroys them simultaneously using electrochemical reactions at the opposite electrode, making the overall system highly energy-efficient.”

To evaluate the method, the team used various water samples that included municipal wastewater, all spiked with either a low or moderate concentration of PFAS.

“Within three hours of starting the electrochemical adsorption process in the lab, we saw a 93% reduction of PFAS concentration in the low concentration spiked samples and an 82.5% reduction with a moderate concentration spiked samples, which shows the system can be efficient for different contamination contexts – such as in drinking water or even chemical spills,” Su said.

Based on concepts first proposed in Su’s previous work with arsenic removal, the process combines the separation and reaction steps in one device. “This is an example of what we call processes intensification, which we believe is an important approach for addressing environmental concerns related to energy and water,” Su said.

The team plans to continue to work with various emerging contaminants, including endocrine disruptors. “We are also very interested in seeing how these basic copolymer concepts might work outside of environmental systems and help perform challenging chemical separations, such as drug purification in the pharmaceutical industry,” Su said.

###

Postdoctoral researcher Kwiyong Kim and graduate student Paola Baldaguez Medina are the lead authors of the study. Postdoctoral researchers Johannes Elbert and Emmanuel Kayiwa also contributed to the study.

The U. of I., the National Science Foundation and the Illinois Water Resources Center supported this study.

Editor’s notes:

To reach Xiao Su, call 217-300-0134; email [email protected]

The paper “Molecular tuning of redox-copolymers for selective electrochemical remediation” is available online and from the U. of I. News Bureau. DOI: 10.1002/adfm.202004635

Media Contact
Lois Yoksoulian
[email protected]

Original Source

https://news.illinois.edu/view/6367/1939248119

Related Journal Article

http://dx.doi.org/10.1002/adfm.202004635

Tags: Chemistry/Physics/Materials SciencesCivil EngineeringEcology/EnvironmentHydrology/Water ResourcesMaterialsPollution/RemediationPolymer Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Predicts the onset of Alzheimer’s Disease (AD) using deep learning-based Splice-AI

February 27, 2021
IMAGE

When foams collapse (and when they don’t)

February 27, 2021

UTA researcher explores effects of trauma at the cellular, tissue levels of the brain

February 26, 2021

Picture books can boost physical activity for youth with autism

February 26, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    638 shares
    Share 255 Tweet 160
  • People living with HIV face premature heart disease and barriers to care

    82 shares
    Share 33 Tweet 21
  • Global analysis suggests COVID-19 is seasonal

    38 shares
    Share 15 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Technology/Engineering/Computer ScienceMedicine/HealthcancerInfectious/Emerging DiseasesEcology/EnvironmentMaterialsCell BiologyClimate ChangeBiologyGeneticsPublic HealthChemistry/Physics/Materials Sciences

Recent Posts

  • Predicts the onset of Alzheimer’s Disease (AD) using deep learning-based Splice-AI
  • When foams collapse (and when they don’t)
  • UTA researcher explores effects of trauma at the cellular, tissue levels of the brain
  • Picture books can boost physical activity for youth with autism
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In