• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Cool flames created during a first for International Space Station research

Bioengineer by Bioengineer
July 21, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New research conducted aboard the orbiting laboratory in June 2021 has now achieved another first for microgravity flame research

IMAGE

Credit: NASA

Cool flames, flames that burn at extremely low temperatures, are nearly impossible to create in Earth’s gravity. However, they are easily produced in the microgravity environment of the International Space Station.

Non-premixed cool flames, created when fuel and oxidizer are not mixed before reacting, were discovered in 2012 aboard the space station during the Flame Extinguishment (FLEX) studies, helping spawn a rapidly growing research field into the nature of cool flames.

“There have been significant advances in cool flame research and understanding since 2012. The discovery of steady non-premixed cool flames has allowed a more detailed study of cool flames and their chemistry,” says NASA’s Glenn Research Center Scientist Daniel Dietrich.

New research conducted aboard the orbiting laboratory in June 2021 has now achieved another first for microgravity flame research.

Data from tests conducted for the Cool Flames Investigation with Gases (CFI-G), sponsored by the ISS U.S. National Lab and National Science Foundation, show the presence of cool flames. While the flames created aboard station in 2012 burned liquid fuel, these new cool flames burned gaseous fuels. This was the first time spherical non-premixed cool flames have been observed burning gaseous fuels.

The results of this investigation could lead to cleaner, more efficient internal combustion engines.

“Cool flames are important to study because engine technology is trending toward lower temperatures. Little is known about combustion chemistry at these temperatures, and experiments like CFI-G could help,” says CFI-G Principal Investigator Peter Sunderland.

While cool flames are important in engines, most internal combustion engines are designed using computer models that ignore their chemistry. Cool flame chemistry also has a significant impact on fuel octane and cetane ratings, numbers that describe the performance and ignition of fuel. Understanding these can have major economic consequences.

Since cool flames give off little heat or light, they were too faint to be visible in real time during space station testing. The research team uncovered the presence of three cool flames in the data on thermal radiation and burner temperature measurements after the hot flames were quenched.

“This is a significant advance in the understanding of cool flames, and we are excited to see these experiment results,” says Dietrich. “The unique geometry and hardware allow Sunderland and his team to study the structure and limits of cool flames in more detail than was possible in earlier station experiments.”

An intensified camera filtered to look for the very faint emissions of a cool flame produced the flame images above. As expected, the cool flame was much smaller than the hot flame. The sequence shows the quenching of the hot flame, followed by a comparatively dark period lasting roughly a second, after which the cool flame becomes evident.

“What used to be a theoretical possibility is now an experimental reality,” says FLEX co-principal investigator Vedha Nayagam. “I am confident that these initial observations will lead to further experimental explorations of the boundaries of cool flame regimes.”

###

Media Contact
Leah Cheshier
[email protected]

Original Source

http://www.nasa.gov/mission_pages/station/research/news/Cool_Flames_First_for_ISS

Tags: Chemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)
Share12Tweet8Share2ShareShareShare2

Related Posts

McGill Study Identifies Montreal Snow Dumps and Inactive Landfills as Significant Methane Emitters

McGill Study Identifies Montreal Snow Dumps and Inactive Landfills as Significant Methane Emitters

October 17, 2025
Recursive Enzymatic Network Enables Multitask Molecular Processing

Recursive Enzymatic Network Enables Multitask Molecular Processing

October 17, 2025

How Focus Sharpens Sound Processing: The Brain’s Path to Better Listening

October 17, 2025

Eliminating Uncertainty in Shock Wave Predictions Through Advanced Computational Modeling

October 17, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1260 shares
    Share 503 Tweet 315
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    282 shares
    Share 113 Tweet 71
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    118 shares
    Share 47 Tweet 30
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    102 shares
    Share 41 Tweet 26

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Improving Carbon Reduction Strategies with OCO and ICOS

Placental DNA Mutations, Stress, and Infant Emotions

Navigating Young Adulthood: Autism Milestones and Supports

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.