• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Controlling thermal conductivity of polymers with light

Bioengineer by Bioengineer
March 11, 2019
in Science
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: University of Illinois Materials Research Lab

Polymers are regularly used as thermal insulators for everything from keeping beverages hot to keeping sensitive electronics cool. In some cases, polymers can even be used as thermal conductors to enable efficient heating or cooling.

In a new study, researchers at the University of Illinois at Urbana-Champaign have designed and demonstrated a novel type of polymer demonstrating a switchable thermal conductivity controlled by light. The material has the potential to route the conduction of heat on-demand and enable new, smarter, ways to manage heat.

The findings are reported in Proceedings of the National Academy of Sciences.

“Polymers are used extensively in engineered systems, but these materials have almost always been considered thermally static. Discovery of polymers that can be optically triggered to quickly switch between thermally conducting and insulating states will open up entirely new opportunities in thermal engineering,” explained Paul Braun, a materials science and engineering (MatSE) professor and director of the Illinois Materials Research Laboratory.

“To the best of our knowledge, this is the first observation of a light-triggered reversible crystal-liquid transition in any polymeric material. The particularly notable finding in this study is the fast, reversible 3-fold change in thermal conductivity associated with the phase transition,” explained Jungwoo Shin, a MatSE Ph.D. student at Illinois.

The thermal switching polymer developed by the Illinois research team demonstrates a powerful control of the thermophysical properties of a polymer in response to light. This ability originates from a photo-responsive molecule,azobenzene, which can be optically excited by ultraviolet (UV) and visible light.

“We synthesized a complex polymer functionalized with light-responsive azobenzene groups. By illuminating with UV and visible light, we could change the shape of the azobenzene group, modulate interchain bonding strength and drive a reversible transition between crystal and liquid,” said Jaeuk Sung, a MatSE Ph.D. student at Illinois.

To capture the thermal conductivity transitions of azobenzene polymers under light illumination, the Illinois research team used a technique called time-domain thermoreflectance (TDTR) developed by David Cahill, a MatSE professor at Illinois.

“The way heat is carried in polymer is related to the diffusion of vibrational modes. In ordered crystals, these vibrational modes travel much further than what is observed in disordered liquids. As a result, an extreme change in molecular ordering of the polymer can significantly alter the thermal conductivity,” David Cahill said.

This extreme change in macromolecular ordering, e.g., crystal-to-liquid, is rare in nature, and has not been reported previously for any polymer system in response to light. Thus, unravelling the mechanism of the light-triggered phase transition was critical to understand the polymer’s unique behavior.

“We could observe that, upon light exposure, this material quickly switches from one state to another with dramatically distinct heat transport properties. We used synchrotron-based x-ray scattering to elucidate the structure associated with each state during the transformation, closing the synthesis-characterization-function loop for this sophisticated polymer,” added Cecilia Leal, a MatSE professor at Illinois.

“Keeping an electrical device warm is as equally important as keeping it cold. Materials with such switchable thermal conductivity would enable ways to keep electrified systems safe, reliable and efficient even under extreme condition.” explained Andrew Alleyne, the director of the National Science Foundation (NSF) sponsored Engineering Research Center for Power Optimization of Electro-Thermal Systems (POETS) which supported this work, and a professor in Mechanical Science and Engineering at Illinois.

“The ability to rapidly switch the thermal properties of a polymer by exposure to light opens up exciting new routes for control of thermal transport and energy conversion at the molecular level,” added Nancy Sottos, a MatSE professor at Illinois.

This finding provides a striking example of how light can be used to control the thermal conductivity of polymers. A better understanding of the physical relationship between thermal conductivity and macromolecular ordering would also help push the limits of traditional polymers.

###

Additional co-authors of this article include Minjee Kang and Xu Xie (Illinois), Byeongdu Lee (Argonne National Laboratory), and Kyung Min Lee and Timothy White (Air Force Research Laboratory).

Media Contact
Paul Braun
[email protected]

Original Source

https://matse.illinois.edu/news/controlling-thermal-conductivity-polymers-light

Related Journal Article

http://dx.doi.org/10.1073/pnas.1817082116

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesElectromagneticsMaterialsPolymer Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    74 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Serotonin’s Role in Sex Differences in Fear Learning

Gut Bacteria Break Down Purines Through Novel Pathway

Functional Echocardiography’s Impact on Neonatal Shock

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.