• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Control of anthropogenic atmospheric emissions can improve water quality in seas

Bioengineer by Bioengineer
March 27, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

HKU study shows that control of anthropogenic atmospheric emissions can improve water quality in China’s coastal Seas

IMAGE

Credit: Photo courtesy: Dr Thibodeau @HKU


A new research led by MPhil student Miss Yu Yan Yau and supervised by Dr Benoit Thibodeau from the Department of Earth Sciences and the Swire Institute of Marine Science, the University of Hong Kong (HKU), highlighted the importance of reducing fossil fuel combustion not only to curb the trend of global warming, but also to improve the quality of China’s coastal waters. The findings were recently published in the prestigious journal Environmental Science & Technology.

Fossil fuel burning is strongly associated with global warming. However, atmospheric and marine pollution linked to energy production, transportation and industrial activity are often overlooked. Production of nitrogen oxides (NOx) emissions via fossil fuel burning and the manufacturing of fertilizer pollutes the atmosphere and leads to the formation of ground-level ozone, smog, acid rain and contributes to global warming through the greenhouse effect. Moreover, nitrogen is a natural fertilizer and thus when atmospheric nitrogen oxides deposit in the water, it can also have a fertilizing effect. This fertilizing effect can lead to ‘eutrophication’; a chain reaction starting with the addition of nutrients (here nitrogen oxides), which enhance the production of algae, which, in turn, die and sink to the bottom of the ocean and decompose. During the decomposition of this organic material, oxygen is consumed from the water, lowering the dissolved oxygen content at the bottom of the ocean. Constant reductions of dissolved oxygen scan lead to hypoxia, a level of oxygenation that is too low for most organisms to sustain their normal activities.

The study used Intergovernmental Panel on Climate Change (IPCC) – projected trends in atmospheric emissions of NOx coupled with a biogeochemical model to estimate the impact of the deposition of nitrogen oxides in four major Chinese coastal seas: The South China Sea, the East China Sea, the Yellow Sea and the Bohai Sea. The researchers found that although atmospheric deposition is not as important as riverine nitrogen input, it can still fuel up to 15% of the total amount of organic matter found at the bottom of the ocean, increasing significantly (up to 5%) the area of hypoxia. The good news is that it also found that a reduction of emissions can lead to a significant decrease of hypoxic zones, and that the South China Sea is the most sensitive area to nitrogen input.

“I hope our study brings more attention to the potential benefit of reducing fossil fuel burning on human and ecosystem health but also on local economic activities like fisheries, which are severely affected by hypoxia,” said Miss Yau.

“Low levels of oxygen are observed in many coastal seas around the world and it is important to find better ways to tackle this problem. While we understand that sewage and nutrient input from the Pearl River drive most of the hypoxia in the Greater Bay Area, we observe low levels of oxygen in regions that are not directly under the influence of these sources. Thus, it is important to investigate the impact of atmospheric deposition more locally,” Dr Thibodeau remarked.

###

This work was partly funded by the cross-universities RGC-funded project OCEAN-HK, which aims at providing a diagnosis and prognosis of intensifying eutrophication, hypoxia and the ecosystem consequences around Hong Kong waters.

About the journal paper

“Quantifying the Impact of Anthropogenic Atmospheric Nitrogen Deposition on the Generation of Hypoxia under Future Emission Scenarios in Chinese Coastal Waters”, Environmental Science & Technology

About the research team

Miss Yu Yan Yau, an MPhil student at HKU Science and her supervisor Dr Benoit Thibodeau, Research Assistant Professor in the Department of Earth Sciences and the Swire Institute of Marine Science.

Dr David Baker, Associate Professor in the School of Biological Sciences and the Swire Institute of Marine Science.

Media Contact
Cindy Chan
[email protected]
852-391-75286

Original Source

https://www.hku.hk/press/news_detail_20800.html

Related Journal Article

http://dx.doi.org/10.1021/acs.est.0c00706

Tags: Climate ChangeEarth ScienceEnergy SourcesHydrology/Water ResourcesTemperature-Dependent Phenomena
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Advancing Toward a Sustainable Approach for Ethylene Production

October 29, 2025
Join Thousands of Researchers in Houston Exploring the Latest Advances in Fluid Dynamics

Join Thousands of Researchers in Houston Exploring the Latest Advances in Fluid Dynamics

October 29, 2025

Enhancing Hygiene and Usability of Menstrual Cups: A Scientific Breakthrough

October 29, 2025

Innovative Carbon Support Enhances Performance and Longevity of Low-Platinum Fuel Cells

October 29, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1290 shares
    Share 515 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    311 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    200 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Hypoxia Alters Calpastatin, Influencing Trophoblast Function

Unlocking Longevity: How a Unique Protein Repairs DNA in Bowhead Whales

Scientists Develop Promising New Drug Candidate to Combat Diabetes

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.