• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Continuous non-invasive glucose sensing on the horizon with the development of a new optical sensor.

Bioengineer by Bioengineer
March 19, 2024
in Chemistry
Reading Time: 4 mins read
0
TMOS continuous infrared glucose sensor 1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

For decades, people with diabetes have relied on finger pricks to withdraw blood or adhesive microneedles to measure and manage their glucose levels. In addition to being painful, these methods can cause itching, inflammation and infection.

TMOS continuous infrared glucose sensor 1

Credit: RMIT University

For decades, people with diabetes have relied on finger pricks to withdraw blood or adhesive microneedles to measure and manage their glucose levels. In addition to being painful, these methods can cause itching, inflammation and infection.

Researchers at TMOS, the Australian Research Council Centre of Excellence for Transformative Meta-Optical Systems, have taken an important step towards eliminating this discomfort. Their RMIT University team has discovered new aspects of glucose’s infrared signature and have used this information to develop a miniaturised optical sensor only 5mm in diameter that could one day be used to provide continuous non-invasive glucose monitoring in diabetes management.

Non-invasive glucose sensing has been a target for almost 30 years due to its implications for pain free monitoring. Optical glucose sensing techniques have been reported; however, they require complex optical instrumentation usually found in laboratories, making them unsuitable for regular patient use.

The primary challenging facing affordable, wearable optical glucose testing has been miniaturisation and filtering out the glucose signals from water absorption peaks in the near infrared (NIR) spectrum. Essentially, it has been almost impossible to accurately differentiate between water and glucose in the blood. Until now.

In a first-of-its-kind research published in Advanced Sensor Research this week, the team has identified four infrared peaks in glucose that allow selective and sensitive identification in aqueous and biological environments.  The team is keen to collaborate with academic and industry partners to continue this work and conduct pre-clinical and clinical research, which would open the door to the development of wearable optical glucose sensors.

The team has fabricated a miniaturised glucose sensor established on a 1600-1700nm waveband that is Bluetooth enabled and operates using a coin battery, which allows for continuous glucose monitoring. This compact sensor has demonstrated its viability detecting glucose levels in the human body range from 50 to 400mg/dL in blood plasma, with a comparable limit of detection and sensitivity to larger, laboratory-based sensors. Its small dimensions could see it one day integrated into smart watches and other pain-free wearable health trackers.

Lead author, RMIT PhD scholar Mingjie Yang, says “Until now, there is no consensus on the unique spectroscopic signature of glucose, largely because the O-H bonds targeted in near-infrared (NIR) spectroscopy for glucose detection are also abundant in water. This similarity makes it challenging to distinguish between glucose and water signals, especially in complex biological fluids and tissues. We optimized spectroscopy setup and analysed transmittance to identify peaks unique to glucose. Our discovery finally provides the information necessary to move forward with miniaturised optical glucose sensing and we have developed a device prototype to suggest the foundation for futuristic non-invasive glucose sensor.”

The device prototype utilises a surface-mounted device light emitting diode (SMD LED) and circuits made of thin-film copper coated polymide (Cu/PI) only 110 microns thick developed with a laser patterning technology. The millimeter-scale and lightweight design of this device making it considerably more compact than traditional benchtop spectrophotometers. Furthermore, the flexible patch-like design offers the future possibility of direct reading as a wearable device on human skin.

The performance of the device has been rigorously evaluated using aqueous glucose solutions as well as in blood plasma. Computational analysis of light-skin interference has been conducted that indicate how the SMD LED will penetrate the skin. Simulation results suggest the promising locations for future exploration of optical glucose sensing in clinical setups.

TMOS Chief Investigator Madhu Bhaskaran says, “The non-invasive nature of optical glucose sensors has the potential to improve patient compliance, reduce discomfort, and lower the risks of infections associated with invasive glucose monitoring. With the right collaborators/partners and the right funding, this can represent an important shift towards continuous and pain-free glucose sensing.”

Wearable sensors, such as this one developed by TMOS researchers at RMIT, are part of Centre’s Meta Health Sensors Flagship Program—an applied research program dedicated to the development of meta-optical sensors for MedTech applications.

RMIT University has filed a patent application related to the optical glucose sensor technology that the team developed.

For more information about this research, please contact [email protected]



Journal

Advanced Sensor Research

DOI

10.1002/adsr.202300160

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Miniaturized Optical Glucose Sensor Using 1600–1700 nm Near-Infrared Light

Article Publication Date

16-Mar-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Chemobiological Platform Converts Renewable Sugars into Key Aromatic Hydrocarbons Found in Petroleum

Innovative Chemobiological Platform Converts Renewable Sugars into Key Aromatic Hydrocarbons Found in Petroleum

October 12, 2025
Harnessing Microwaves to Boost Energy Efficiency in Chemical Reactions

Harnessing Microwaves to Boost Energy Efficiency in Chemical Reactions

October 10, 2025

Wirth Named Fellow of the American Physical Society

October 10, 2025

UTA Physicist Secures $1.3 Million Grant to Advance Neutrino Research

October 10, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1223 shares
    Share 488 Tweet 305
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    89 shares
    Share 36 Tweet 22

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Brainstem Connectivity Differences by Sex and Menopause

Fluorescent Probe Visualizes Plant Salt Stress

Neuronal Ceroid Lipofuscinosis: Mechanisms and Treatment Advances

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.