• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Computing faster with quasi-particles

Bioengineer by Bioengineer
May 10, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Picture: Ewelina Hankiewicz

Majorana particles are very peculiar members of the family of elementary particles. First predicted in 1937 by the Italian physicist Ettore Majorana, these particles belong to the group of so-called fermions, a group that also includes electrons, neutrons and protons. Majorana fermions are electrically neutral and also their own anti-particles. These exotic particles can, for example, emerge as quasi-particles in topological superconductors and represent ideal building blocks for topological quantum computers.

Going to two dimensions

On the road to such topological quantum computers based on Majorana quasi-particles, physicists from the University of Würzburg together with colleagues from Harvard University (USA) have made an important step: Whereas previous experiments in this field have mostly focused on one-dimensional systems, the teams from Würzburg and Harvard have succeeded in going to two-dimensional systems.

In this collaboration, the groups of Ewelina Hankiewicz (Theoretische Physik IV) and Laurens Molenkamp (Experimentelle Physik III) from the University of Würzburg teamed up with the groups of Amir Yacoby and Bertrand Halperin from Harvard University. Their findings are presented in the current issue of the scientific journal Nature.

Two superconductors can simplify matters

„Realizing Majorana fermions is one of the most intensely studied topics in condensed matter physics,” Ewelina Hankiewicz says. According to her, previous realizations have usually focused on one-dimensional systems such as nanowires. She explains that a manipulation of Majorana fermions is very difficult in these setups. It would therefore require significant efforts to make Majorana fermions in these setups eventually applicable for quantum computing.

In order to avoid some of these difficulties, the researchers have studied Majorana fermions in a two-dimensional system with strong spin-orbit coupling. „The system we investigate is a so-called phase-controlled Josephson junction, that is, two superconductors that are separated by a normal region,” Laurens Molenkamp explains. The superconducting phase difference between the two superconductors provides an additional knob, which makes an intricate fine-tuning of the other system parameters at least partially unnecessary.

Important step towards an improved control

In the material studied, a mercury telluride quantum well coupled to superconducting thin-film aluminium, the physicists observed for the first time a topological phase transition which implies the appearance of Majorana fermions in phase-controlled Josephson junctions. The setup realized experimentally here constitutes a versatile platform for the creation, manipulation and control of Majorana fermions, which offers several advantages compared to previous one-dimensional platforms. According to Hankiewicz, „this is an important step towards an improved control of Majorana fermions.” The proof of concept of a topological superconductor based on a two-dimensional Josephson junction opens up new possibilities for the research on Majorana fermions in condensed matter physics. In particular, several constraints of previous realizations of Majorana fermions can be avoided.

Potential revolution in computer technology

At the same time, an improved control of Majorana fermions represents an important step towards topological quantum computers. Theoretically, such computers can be significantly more powerful than conventional computers. They thus have the potential to revolutionize computer technology.

Next, the researchers plan to improve the Josephson junctions and move towards junctions with narrower normal regions. Here, more localized Majorana fermions are expected. They further study additional possibilities of manipulating Majorana fermions, for example, by using other semiconductors.

###

Media Contact
Dr. Ewelina Hankiewicz
[email protected]

Original Source

https://www.uni-wuerzburg.de/en/news-and-events/news/detail/news/computing-faster-with-quasi-particles/

Related Journal Article

http://dx.doi.org/10.1038/s41586-019-1148-9

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesElectromagneticsMaterialsNanotechnology/MicromachinesSuperconductors/Semiconductors
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Advancing Toward a Sustainable Approach for Ethylene Production

October 29, 2025
Join Thousands of Researchers in Houston Exploring the Latest Advances in Fluid Dynamics

Join Thousands of Researchers in Houston Exploring the Latest Advances in Fluid Dynamics

October 29, 2025

Enhancing Hygiene and Usability of Menstrual Cups: A Scientific Breakthrough

October 29, 2025

Innovative Carbon Support Enhances Performance and Longevity of Low-Platinum Fuel Cells

October 29, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1290 shares
    Share 515 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    311 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    200 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

GLP-1 Drugs Show Promise for Weight Loss, but Further Independent Research Required

Ultrasound-Powered Programmable Artificial Muscles

Evaluating Pharmacists’ Role in Chronic Dermatology Care

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.