• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, March 6, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Computational medicine — moving from uncertainty to precision

Bioengineer by Bioengineer
February 10, 2021
in Health
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Collaboration between Dell Med, Oden Institute, TACC, industry, government establishes Texas as a leader in computational medicine

IMAGE

Credit: UT Austin

Individual choices in medicine carry a certain amount of uncertainty.

An innovative partnership at The University of Texas at Austin takes aim at medicine down to the individual level by applying state-of-the-art computation to medical care.

“Medicine in its essence is decision-making under uncertainty, decisions about tests and treatments,” said Radek Bukowski, MD, PhD, professor and associate chair of Investigation and Discovery in the Department of Women’s Health at Dell Medical School at UT Austin.

“The human body and the healthcare system are complex systems made of a vast number of intensely interacting elements,” he said. “In such complex systems, there are many different pathways along which an outcome can occur. Our bodies are robust, but this also makes us very individualized, and the practice of medicine challenging. Everyone is made of different combinations of risk factors and protective characteristics. This is why precision medicine is paramount going forward.”

To that effect, in the January 2021 edition of the American Journal of Obstetrics Gynecology, experts at Dell Med, Oden Institute for Computational and Engineering Sciences (Oden Institute), and Texas Advanced Computing Center (TACC), along with stakeholders across healthcare, industry, and government, stated that the emergence of computational medicine will revolutionize the future of medicine and health care. Craig Cordola of Ascension and Christopher Zarins of HeartFlow co-authored this editorial review with Bukowski and others.

According to Bukowski, this interdisciplinary group provides a unique combination of resources that are poised to make Texas a leader in providing computational solutions to today’s and tomorrow’s health care issues.

“At UT Austin we’re fortunate to have found ourselves at a very opportune point in time for computational medical research,” Bukowski said. “The Oden Institute has world-class expertise in mathematical modeling, applied math, and computational medicine; TACC is home to the world’s largest supercomputer for open science, and also committed to improving medical care, including outcomes for women and babies.”

Powered by such collaborations, the emerging discipline of computational medicine focuses on developing quantitative approaches to understanding the mechanisms, diagnosis, and treatment of human disease through applications, more commonly found in mathematics, engineering, and computational science. These computational approaches are well-suited to modeling complex systems such as the human body.

An On-Point area of Study for Obstetrics

While computation is pivotal to all domains in medicine, it is especially promising in obstetrics because it concerns at least two patients — mother and baby, who frequently have conflicting interests, making medical decision-making particularly difficult and the stakes exceptionally high.

According to state Rep. Donna Howard, D-Austin, a co-author of the editorial review, Texas legislators should be concerned about the unacceptably high rate of maternal morbidity and mortality in the state.

“When I became aware of the efforts to bring computational medical approaches to addressing maternal morbidity and mortality, I was immediately intrigued,” Howard said. “And when I learned of the interdisciplinary expertise that has found itself conveniently positioned to create this new frontier of medicine, I was sold.”

Individualized medicine is happening now because of advancements in computing power and mathematical modeling that can solve the problems which were unsolvable until now.

Case in point: in 2018 the National Science Foundation awarded UT Austin a $1.2 million grant to support research using computational medicine and smartphones to monitor the activity and behavior of 1,000 pregnant women in the Austin area.

In particular, the growing array of data sources including health records, administrative databases, randomized controlled trials, and internet-connected sensors provides a wealth of information at multiple timescales for which to develop sophisticated data-driven models and inform theoretical formulations.

“When combined with analysis platforms via high performance computing, we now have the capability to provide patients and medical providers analysis of outcomes and risk assessment on a per-individual basis to improve the shared decision making process,” Bukowski concluded.

###

The study, “Computational medicine, present and the future: obstetrics and gynecology perspective,” was published in the American Journal of Obstetrics and Gynecology, January 2021. The editorial review authors are Radek Bukowski MD, PhD; Karl Schulz PhD; Kelly Gaither PhD; Keri K. Stephens PhD; Dave Semeraro PhD; Justin Drake PhD; Gordon Smith MD, PhD; Craig Cordola FACHE; Thaleia Zariphopoulou PhD; Thomas J.R. Hughes PhD; Christopher Zarins MD; Dimitri Kusnezov PhD; Rep. Donna Howard MA; and Tinsley Oden PhD.

Media Contact
Faith Singer-Villalobos
[email protected]

Original Source

https://www.tacc.utexas.edu/-/computational-medicine-moving-from-uncertainty-to-precision

Tags: Computer ScienceGynecologyMedicine/HealthTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Study reveals how egg cells get so big

March 5, 2021
IMAGE

Survey identifies factors in reducing clinical research coordinator turnover

March 5, 2021

New ‘split-drive’ system puts scientists in the (gene) driver seat

March 5, 2021

Online dating: Super effective, or just… superficial?

March 5, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    668 shares
    Share 267 Tweet 167
  • People living with HIV face premature heart disease and barriers to care

    84 shares
    Share 34 Tweet 21
  • Global analysis suggests COVID-19 is seasonal

    39 shares
    Share 16 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    36 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Climate ChangecancerMaterialsCell BiologyChemistry/Physics/Materials SciencesBiologyTechnology/Engineering/Computer ScienceInfectious/Emerging DiseasesPublic HealthEcology/EnvironmentMedicine/HealthGenetics

Recent Posts

  • “Magic sand” might help us understand the physics of granular matter
  • Study reveals how egg cells get so big
  • Survey identifies factors in reducing clinical research coordinator turnover
  • New ‘split-drive’ system puts scientists in the (gene) driver seat
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In