• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Complexity yields simplicity: The shifting dynamics of temperate marine ecosystems

Bioengineer by Bioengineer
July 16, 2021
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from the University of Tsukuba find that ocean warming and acidification are shifting temperate coastal reefs to simple turf-dominated ecosystems

IMAGE

Credit: University of Tsukuba

Shizuoka, Japan – At Shikine Island, Japan, kelp forests and abalone fisheries were once common, but over the last twenty years they have disappeared. Now, researchers from Japan have discovered that these temperate coastal marine ecosystems are becoming more “simple”, losing biodiversity, complexity and their aesthetic values.

In a study published this month, researchers from the University of Tsukuba and international collaborators explored how the combined effects of ocean warming and acidification are changing temperate coastal marine ecosystems.

Tropical coastal seas are synonymous with coral reefs. As ocean temperatures cool toward the poles, corals give way to kelp as the main habitat-forming species. The shift from coral to kelp can clearly be seen along the 2000 km coastline of Japan, and changes to these ecosystems are already underway.

“Kelp forests are being lost globally as a result of warmer sea surface temperatures and heatwaves,” says lead author, Dr Sylvain Agostini. “In Japan, this “isoyake”, or “burnt seashore”, is widespread. As ocean temperatures continue to increase, warm water corals are shifting northward into temperate reefs and could replace cold-water species.”

There are three possible scenarios as coastal species shift. Temperate reefs could become more tropicalized and dominated by warm water corals, fishes, and other species. Alternatively, reefs may become dominated by tropical seaweeds or turf algae.

But another effect of increasing greenhouse gas emissions–ocean acidification–complicates matters. Acidification reduces the amount of carbonate in the ocean, which is needed by reef-building corals to create their structure. Decreases in carbonate ion concentrations could limit the colonization of new areas by fast-growing coral species.

To examine possible changes along the coast of Japan, the team used three locations at a similar latitude that represent three different scenarios (present, ocean warming, and ocean warming plus acidification). They examined the existing communities, and then transplanted kelp and coral species and measured their growth and survival at the different sites.

The team found that with both ocean warming and acidification, coastal ecosystems are likely to lose kelp forests but may not gain reef-building corals. The result is a simplified turf-dominated habitat.

“Warmer waters facilitate the growth and colonization of reef-building corals,” explains Dr Ben Harvey. “But ocean acidification appears to negate these benefits. And kelp transplants did not survive in warmer waters, largely because they were eaten by warm water fishes.”

“The consequences of these changes is that warm temperate coastal waters are facing major simplification which is clearly seen in the degradation of the seascape” as noted and documented by Prof. Nicolas Floc’h, co-author of the study and artist at the Ecole EuropĂ©enne SupĂ©rieure d’Art de Bretagne. Lost kelp forests are likely to be replaced by simpler turf-dominated communities that provide a fraction of the ecosystem services of more biodiverse tropical reefs. Overall, the results highlight the urgent need for control of carbon emissions and limit the drivers of ocean change.

###

The article, “Simplification, not ‘tropicalization’, of temperate marine ecosystems under ocean warming and acidification,” was published in Global Change Biology at DOI: 10.1111/gcb.15455.

Media Contact
Naoko Yamashina
[email protected]

Related Journal Article

http://dx.doi.org/10.1111/gcb.15455

Tags: BiodiversityBiologyClimate ChangeEcology/EnvironmentFisheries/AquacultureMarine/Freshwater BiologyOceanographyTemperature-Dependent Phenomena
Share13Tweet8Share2ShareShareShare2

Related Posts

Distinct Body Sizes: Analyzing Pig Skeletal Muscle Transcriptomes

Distinct Body Sizes: Analyzing Pig Skeletal Muscle Transcriptomes

November 16, 2025
blank

HBB Mutation Frequency in Nigerian, Zimbabwean Populations

November 16, 2025

Characterizing UGT Family: Key Role in Blueberry Development

November 16, 2025

LMNB2 Modulates p38 MAPK to Influence Esophageal Cancer

November 16, 2025
Please login to join discussion

POPULAR NEWS

  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    210 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    318 shares
    Share 127 Tweet 80
  • Neurological Impacts of COVID and MIS-C in Children

    88 shares
    Share 35 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Sequelae of Viral CNS Infections: Outcomes, Mechanisms, Gaps

Distinct Body Sizes: Analyzing Pig Skeletal Muscle Transcriptomes

LHAASO Sheds Light on the Origin of the Cosmic Ray “Knee” Phenomenon

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.