• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Completely new antibiotic resistance gene has spread unnoticed to several pathogens

Bioengineer by Bioengineer
March 27, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Photo by Johan Wingborg


Aminoglycoside antibiotics are critically important for treating several types of infections with multi-resistant bacteria. A completely new resistance gene, which is likely to counteract the newest aminoglycoside-drug plazomycin, was recently discovered by scientists in Gothenburg, Sweden.

The bacterial gene the team discovered in river sediment from India does not resemble any known antibiotic resistance gene. But when the scientist compared its DNA sequence to already published bacterial DNA sequences, they found that it was already present in several pathogens, including Salmonella and Pseudomonas, from the USA, China and Italy. Until now, no one had realized that it was a resistance gene.

The research team has named the gene gar as it provides resistance to aminoglycoside antibiotics that carry a garosamine group. This is the case for the newest aminoglycoside drug, plazomycin, developed to circumvent most existing aminoglycoside resistance mechanisms.

Professor Joakim Larsson, senior author of the study and director of the Centre for Antibiotic Resistance Research at University of Gothenburg, Sweden, comments on the finding:

– It is good news that the gar gene still seems to be rather rare, but as it is spreading, it will likely further complicate treatment of already multi-resistant bacteria. Pseudomonas aeruginosa, for example, is a common cause of hospital-acquired pneumonia. Being able to treat secondary bacterial lung infections is something that we are particularly worried about these days when the world is hit by the covid-19 pandemic.

Rather than investigating bacterial isolates from patients, the researchers looked for novel resistance genes in in waste-water-impacted rivers in India, a country already struggling hard with increasing antibiotic resistance. The scientists´ approach of investigating environmental samples turned out to be an effective way of discovering resistance genes that, so far, are carried only by few people.

– Early discovery of resistance genes can help us managing their spread, facilitate gene-based diagnostics and perhaps also guide industry to develop drugs that can circumvent the resistance, says Joakim Larsson.

Around the world, companies and academic researcher try to develop new antibiotics, but their success is very limited. Even when they succeed, the development seems inevitable:

– Every antibiotic mankind has developed so far has eventually been met by resistance in at least some of the pathogens it was intended to treat. The gar gene is just the latest in a series of genes that one by one reduces the value of antibiotics, says Joakim Larsson.

The research group in Gothenburg studies the environments role in antibiotic resistance, particularly as source for resistance genes that can move from harmless environmental species to those that cause disease.

– The enormous diversity of bacteria in the environment around us probably already harbour genes to every antibiotic we ever will develop – unless we start thinking very differently about how antibiotics are designed, says Joakim Larsson.

###

The study is published in the scientific journal Microbiome.

Title: Discovery of a novel integron-borne aminoglycoside resistance gene present in clinical pathogens by screening environmental bacterial communities; https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-020-00814-z

Research team: Research interest – Joakim Larsson group; https://biomedicine.gu.se/ominst/avd/infektion/forskare/joakim_larsson

CARe: Centre for Antibiotic Resistance Research; https://care.gu.se/

Media Contact
Joakim Larsson
[email protected]
46-709-621-068

Related Journal Article

http://dx.doi.org/10.1186/s40168-020-00814-z

Tags: Ecology/EnvironmentInfectious/Emerging DiseasesMedicine/HealthPharmaceutical Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Organic Cofactor Enables Energy-Transfer Photoproximity Labeling

Organic Cofactor Enables Energy-Transfer Photoproximity Labeling

September 18, 2025
UVA Secures $16M DOE Grant to Establish Cutting-Edge Predictive Science Simulation Center

UVA Secures $16M DOE Grant to Establish Cutting-Edge Predictive Science Simulation Center

September 17, 2025

A Motor-Sparing Local Anesthetic: Is It Within Reach?

September 17, 2025

Protein Chemist Secures NIH Grant to Explore Mechanisms of Inflammation

September 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Analog Speech Recognition via Physical Computing

Organic Cofactor Enables Energy-Transfer Photoproximity Labeling

Forensic Imaging Uncovers Torture in Asylum Seekers

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.