• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, March 1, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Comet or asteroid: What killed the dinosaurs and where did it come from?

Bioengineer by Bioengineer
February 15, 2021
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New theory explains possible origin of the Armageddon-causing object.

IMAGE

Credit: Credit not required. This is a public domain image.

It forever changed history when it crashed into Earth about 66 million years ago.

The Chicxulub impactor, as it’s known, left behind a crater off the coast of Mexico that spans 93 miles and runs 12 miles deep. Its devastating impact brought the reign of the dinosaurs to an abrupt and calamitous end by triggering their sudden mass extinction, along with the end of almost three-quarters of the plant and animal species living on Earth.

The enduring puzzle: Where did the asteroid or comet originate, and how did it come to strike Earth? Now, a pair of researchers at the Center for Astrophysics | Harvard & Smithsonian believe they have the answer.

In a study published today in Nature’s Scientific Reports, Harvard University astrophysics undergraduate student Amir Siraj and astronomer Avi Loeb put forth a new theory that could explain the origin and journey of this catastrophic object.

Using statistical analysis and gravitational simulations, Siraj and Loeb calculate that a significant fraction of long-period comets originating from the Oort cloud, an icy sphere of debris at the edge of the solar system, can be bumped off-course by Jupiter’s gravitational field during orbit.

“The solar system acts as a kind of pinball machine,” explains Siraj, who is pursuing bachelor’s and master’s degrees in astrophysics, in addition to a master’s degree in piano performance at the New England Conservatory of Music. “Jupiter, the most massive planet, kicks incoming long-period comets into orbits that bring them very close to the sun.”

During close passage to the sun, the comets — nicknamed “sungrazers” –can experience powerful tidal forces that break apart pieces of the rock and ultimately, produce cometary shrapnel.

“In a sungrazing event, the portion of the comet closer to the sun feels a stronger gravitational pull than the part that is further, resulting in a tidal force across the object,” Siraj says. “You can get what’s called a tidal disruption event, in which a large comet breaks up into many smaller pieces. And crucially, on the journey back to the Oort cloud, there’s an enhanced probability that one of these fragments hit the Earth.”

The new calculations from Siraj and Loeb’s theory increase the chances of long-period comets impacting Earth by a factor of about 10, and show that about 20 percent of long-period comets become sungrazers.

The pair say that their new rate of impact is consistent with the age of Chicxulub, providing a satisfactory explanation for its origin and other impactors like it.

“Our paper provides a basis for explaining the occurrence of this event,” Loeb says. “We are suggesting that, in fact, if you break up an object as it comes close to the sun, it could give rise to the appropriate event rate and also the kind of impact that killed the dinosaurs.”

Evidence found at the Chicxulub crater suggests the rock was composed of carbonaceous chondrite. Siraj and Loeb’s hypothesis might also explain this unusual composition.

A popular theory on the origin of Chicxulub claims that the impactor originated from the main belt, which is an asteroid population between the orbit of Jupiter and Mars. However, carbonaceous chondrites are rare amongst main-belt asteroids, but possibly widespread amongst long-period comets, providing additional support to the cometary impact hypothesis.

Other similar craters display the same composition. This includes an object that hit about 2 billion years ago and left the Vredefort crater in South Africa, which is the largest confirmed crater in Earth’s history, and the impactor that left the Zhamanshin crater in Kazakhstan, which is the largest confirmed crater within the last million years. The researchers say that the timing of these impacts support their calculations on the expected rate of Chicxulub-sized tidally disrupted comets.

Siraj and Loeb say their hypothesis can be tested by further studying these craters, others like them, and even ones on the surface of the moon to determine the composition of the impactors. Space missions sampling comets can also help.

Aside from composition of comets, the new Vera Rubin Observatory in Chile may be able to observe tidal disruption of long-period comets after it becomes operational next year.

“We should see smaller fragments coming to Earth more frequently from the Oort cloud,” Loeb says. “I hope that we can test the theory by having more data on long-period comets, get better statistics, and perhaps see evidence for some fragments.”

Loeb says understanding this is not just crucial to solving a mystery of Earth’s history but could prove pivotal if such an event were to threaten the planet.

“It must have been an amazing sight, but we don’t want to see that again,” he said.

###

This work was partially supported by the Harvard Origins of Life Initiative and the Breakthrough Prize Foundation.

About the Center for Astrophysics | Harvard & Smithsonian

The Center for Astrophysics | Harvard & Smithsonian is a collaboration between Harvard and the Smithsonian designed to ask–and ultimately answer–humanity’s greatest unresolved questions about the nature of the universe. The Center for Astrophysics is headquartered in Cambridge, MA, with research facilities across the U.S. and around the world.

Media Contact
Nadia Whitehead
[email protected]

Tags: AstronomyAstrophysicsCalculations/Problem-SolvingComets/AsteroidsEarth ScienceMathematics/StatisticsSpace/Planetary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Mechanistic understanding of oxygen-redox processes in lithium-rich battery cathodes

March 1, 2021
IMAGE

Metal whispering: Finding a better way to recover precious metals from electronic waste

March 1, 2021

Second order optical merons, or light pretending to be a ferromagnet

March 1, 2021

NAU astronomer receives prestigious 2021 Cottrell Scholar Award

March 1, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    650 shares
    Share 260 Tweet 163
  • People living with HIV face premature heart disease and barriers to care

    82 shares
    Share 33 Tweet 21
  • Global analysis suggests COVID-19 is seasonal

    38 shares
    Share 15 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Climate ChangeMaterialsEcology/EnvironmentGeneticscancerTechnology/Engineering/Computer ScienceInfectious/Emerging DiseasesPublic HealthChemistry/Physics/Materials SciencesCell BiologyMedicine/HealthBiology

Recent Posts

  • Post-COVID solutions to improve health in the US subject of new book by CUNY professor
  • Mechanistic understanding of oxygen-redox processes in lithium-rich battery cathodes
  • Scientists describe ‘hidden biodiversity crisis’ as variation within species is lost
  • Socioeconomic status plays a major role in cognitive outcomes
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In