• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Colloidal Quantum Dot Photodetectors can now see further than before

Bioengineer by Bioengineer
January 16, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©ICFO


Optical sensing in the mid to long infrared (5microns – um) is becoming of utmost importance in different fields since it is proving to be an excellent tool for environmental monitoring, gas sensing, thermal imaging as well as food quality control or the pharmaceutical industry, to name a few. The amount of information hidden within this very rich spectral window opens new possibilities for multi or even hyperspectral imaging. Even though there are technologies that can address these challenges, they are very complex and expensive.

Even though there is a strong market need in bringing such functionalities to the consumer market, this would require a technology that is low-cost, CMOS compatible and does not impose severe regulatory concerns.

PbS Colloidal Quantum Dots (CQDs) have emerged as a cost-competitive and high performance photodetector technology, compatible with CMOS technology, which has demonstrated recently to be successful in the short-wave infrared (1-2 um). However, so far, there has been a fundamental limit: such quantum dots have relied on interband absorption of light (photons excite carrier across the bandgap of the material) and as a result there is a lower energy limit that this technology can operate: the bandgap of the material.

In a study recently published in Nanoletters, ICFO researchers Iñigo Ramiro, Onur Ozdemir, Sotirios Christodoulou, Shuchi Gupta, Mariona Dalmases, Iacopo Torre, led by ICREA Prof. at ICFO Gerasimos Konstantatos, now report the development of a colloidal quantum dot photodetector that is capable of detecting light in the long infrared range, from 5 um – 10 um (microns), using PbS CQDs that, for the first time, are made with mercury-free material.

In their experiment, the researchers used a technique to electronically dope the quantum dots robustly and permanently. This heavy doping approach allowed them to enable a new regime for transitions of electrons: instead of relying on transitions across the bandgap of the material, they found a way to facilitate transitions amongst higher excited states, known as intersubband (or intraband) transitions. By achieving this, they were able to excite electrons by absorbing photons with photon energies much lower than before in the mid and long wave infrared. They also demonstrated that the spectral coverage of such detectors can be tuned by changing the size of the dots, that is, the larger the quantum dots, the farther the absorption in the infrared.

The results of this study have reported a novel and unique material platform, based on heavily doped PbS CQDs covering a broad range of light, which could address and solve the challenges that the field of photodetector technologies is facing nowadays. This newly discovered property of light absorption in the long infrared together with a low-cost and maturing CQD technology may bring about a revolution to extreme broadband as well as multispectral CMOS compatible photodetectors.

###

LINKS:

Link to the paper: https://pubs.acs.org/doi/10.1021/acs.nanolett.9b04130

Link to the research group led by ICREA Prof. at ICFO Gerasimos Konstantatos: https://www.icfo.es/lang/research/groups/groups-details?group_id=30

Media Contact
Alina Hirschmann
[email protected]
0034-935-542-246

Tags: Chemistry/Physics/Materials SciencesMaterialsNanotechnology/MicromachinesOpticsSuperconductors/Semiconductors
Share12Tweet8Share2ShareShareShare2

Related Posts

Exploring Black Hole Varieties: A Novel Approach Challenges Einstein’s Theory

Exploring Black Hole Varieties: A Novel Approach Challenges Einstein’s Theory

November 5, 2025
Co-electroreduction of CO and Glyoxal Yields C3 Products

Co-electroreduction of CO and Glyoxal Yields C3 Products

November 5, 2025

Plasma Treatment Enhances Antibacterial Performance of Silica-Based Materials

November 5, 2025

Biodegradable Cesium Nanosalts Trigger Anti-Tumor Immunity by Inducing Pyroptosis and Modulating Metabolism

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Baystate Health Researcher Awarded NIH Grant to Improve Support for Parents Recovering from Substance Use Disorders

CONUT Score Predicts Colorectal Cancer Outcomes

Vitamin E Valproate Mitigates Cypermethrin-Induced Seizure Damage

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.