• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, December 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Coaxing single stem cells into specialized cells

Bioengineer by Bioengineer
September 4, 2020
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New gel deposition technique developed at UIC

IMAGE

Credit: Jae-Won Shin and Sing Wan Wong

Researchers at the University of Illinois Chicago have developed a unique method for precisely controlling the deposition of hydrogel, which is made of water-soluble polymers commonly used to support cells in experiments or for therapeutic purposes. Hydrogel mimics the extracellular matrix – the natural environment of cells in the body.

The researchers noticed that their technique – which allows for the encapsulation of a single cell within a minute hydrogel droplet – can be used to coax bone marrow stem cells into specialized cells.

Their findings are reported in the journal Advanced Science.

The new technique is an improvement over existing approaches that often mix much larger amounts of hydrogel with cells in an uncontrolled manner, which can make interactions between cells and their surroundings difficult to study. The new hydrogel deposition technique may also be useful for therapeutic purposes, such as for supporting stem cells used to create new tissues.

“Most experiments use a very high amount of hydrogels to interface with cells, which may not reflect what is happening in the body,” said UIC’s Jae-Won Shin, assistant professor of pharmacology and regenerative medicine at the College of Medicine, and assistant professor of bioengineering at the College of Engineering, and corresponding author on the paper.

According to Shin, the team’s deposition technique brings the ratio between hydrogels and cells in-line with what is seen in the body, and importantly, precisely controls the ratio on a single cell basis.

Shin and colleagues also observed that stem cells in thinner gel droplets expanded more rapidly than they did in bulk gels.

“We observed that stem cells expand several orders of magnitude faster in thin gel droplets, and so they experience more tension than they do in bulk gels made of the same material,” said Sing Wan Wong, a postdoctoral fellow in Shin’s lab and first author on the study. “We believe this tension encourages stem cells in thin gel coatings to more readily become bone cells, compared to stem cells in bulk gels.”

The team believes the thin hydrogel deposition technique may help in the production of bone tissue from stem cells to use as regenerative therapeutics.

###

Stephen Lenzini, Raymond Bargi, Celine Macaraniag, James C. Lee and Zhangli Peng of UIC and Zhe Feng of the University of Notre Dame are co-authors on the paper.

This research was supported by grants from the National Institutes of Health (R01HL141255, R00HL125884) and the National Science Foundation (1948347-CBET).

Media Contact
Jackie Carey
[email protected]

Original Source

https://today.uic.edu/coaxing-single-stem-cells-into-specialized-cells

Related Journal Article

http://dx.doi.org/10.1002/advs.202001066

Tags: Biomedical/Environmental/Chemical EngineeringBiotechnologyMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Metformin-Alogliptin Combo vs. Monotherapy in Diabetes

December 3, 2025

Botanical Extracts’ Antibacterial Activity Boosted by Enhancers

December 3, 2025

Global Guidelines for Shared Decision-Making in Valvular Heart Disease

December 3, 2025

Hidradenitis Suppurativa Remission Achieved Using Bacteriophage Therapy

December 3, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    204 shares
    Share 82 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    121 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    107 shares
    Share 43 Tweet 27
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Cancer Immunotherapy by Targeting DNA Repair

Evaluating eGFR Equations in Chinese Children

Metformin-Alogliptin Combo vs. Monotherapy in Diabetes

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.